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The main objective of this research is to develop, test and validate a soil moisture content (SMC) algorithm
for GMES Sentinel-1 characteristics. The SMC product, which is to be generated from Sentinel-1 data, requires
an algorithm capable of processing operationally in near-real-time and delivering the product to the GMES
services within 3 h from observation. An approach based on an Artificial Neural Network (ANN) has been
proposed that represents a good compromise between retrieval accuracy and processing time, thus enabling
compliance with the timeliness requirements. The algorithm has been tested and subsequently validated in
several test areas in Italy, Australia, and Spain.
In all cases the validation results were very much in line with GMES requirements (with RMSE generally
b4%SMC – between 1.67%SMC and 6.68%SMC – and very low bias), except for the case of the test area in
Spain, where the validation results were penalized by the availability of only VV polarized SAR images and
MODIS low-resolution NDVI. Nonetheless, the obtained RMSE was slightly higher than 4%SMC.

© 2013 Elsevier Inc. All rights reserved.
1. Introduction

Soil moisture content (SMC) is a key hydrological and climatic var-
iable in various application domains (e.g. Entekhabi et al., 1994;
Jackson, 1993). Unfortunately, the retrieval from local direct measure-
ments of distributed, quantitative and accurate information relative to
themoisture level of soils on a global scale is almost impracticable, due
to the high spatial variability of the target variable. Such methods are
moreover time consuming and expensive.

In recent decades, many spatially-distributed hydrological models
have been developed and successfully applied at scales ranging from
small catchments to the globe (e.g. Entekhabi & Eagleson, 1989;
Famiglietti & Wood, 1994). However, accurate spatial prediction of
soil moisture requires an appropriate accounting for the variability
of soil characteristics and climate forcing. Moreover, an accurate as-
sessment cannot be made without adequate spatially-distributed
soil moisture measurements at the scale of interest.

The possibility of measuring SMC on a large scale from satellite sen-
sors, with complete, repeated and frequent coverage of the Earth's sur-
face is, therefore, extremely enticing (Beaudoin et al., 1990; Benallegue
et al., 1995). Research activities carried out worldwide in the past have
demonstrated that sensors operating in the low-frequency portion of
the microwave spectrum (P- to L-band) are sensitive to variations in
the moisture level of a soil layer, the depth of which depends on the
rights reserved.
soil characteristics, the moisture profile and the signal wavelength
(Macelloni et al., 1999; Shi et al., 1992, 1997). However, at present,
most SAR systems onboard remote sensing satellites (e.g., RADARSAT2,
COSMO SkyMed and TerraSAR-X) operate at C- and X-bands, which, in
terms of sensitivity to soil moisture variations over vegetated terrains,
are not the best suited ones for retrieving SMC. Although some prelim-
inary studies indicate the feasibility of retrieving soil moisture also by
using the new generation X-band SAR sensors (Baghdadi et al., 2012),
working at such high frequencies implies the challenge of coping with
the interfering effects introduced by surface roughness and, above all,
by vegetation coverage on the backscattering coefficient. Under these
operational conditions, an estimate of spatial variations of moisture
with the accuracy requirements of the end-user is still problematic
and challenging. Even when a priori knowledge of the meteorological
conditions, soil properties, and surface coverage are exploited together
with correcting procedures for the effects of soil roughness and vegeta-
tion, the retrieval of soil moisture remains a challenge.

From an analytical point of view, the retrieval of soil parameters
from radar measurements falls within the category of ill-posed prob-
lems, because, in general, more than one combination of soil character-
istics (in terms of SMC, roughness, vegetation coverage, etc.) leads to
the same electromagnetic response at the sensor. Multi-sensor tech-
niques have a certain potential in distinguishing between different con-
tributions of the soil features to the global system response. The
rationale is that soil characteristics affect the microwave signal differ-
ently and to a different extent, depending on the sensor configuration.
By using sensors at different frequencies, polarizations, and incidence
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angles, it is thus possible to improve the extraction of information and
the retrieval accuracy. However, the availability of multi-frequency
and multi-angle sensors on satellite platforms is often difficult to find,
and is sometimes even unfeasible, due to acquisition planning limita-
tions and constraints, thus reducing the applicability of this approach
in operational scenarios. The bistatic radar technique could provide a
further advantage with respect to monostatic radar, but no spacecraft
missions implementing that configuration are in operation (Brogioni
et al., 2010; Pierdicca et al., 2008).

An effective approach for mitigating the ambiguity introduced by
vegetation and roughness conditions on the ground involves focusing
attention on temporal variations among subsequent remote sensing
acquisitions. The rationale in this case lies in the assumption that the
average characteristics of roughness and vegetation cover remain al-
most unaltered, whereas mainly soil moisture content variations af-
fect the backscattering signal (Balenzano et al., 2011; Doubková et
al., 2012; Macelloni et al., 1999; Paloscia et al., 2004; Pierdicca et al.,
2010; van der Velde et al., 2012).

Following a multi-temporal change-detection approach, Wagner
et al. developed a SMC retrieval algorithm for the ERS scatterometer
(Wagner et al., 1999a,b,c). ERS backscattering is described in terms
of empirical backscatter parameters and the relative surface SMC
according to σ0(θ, t) = σ0

dry(θ, t) + S(t)ms(t), where θ is the local
incidence angle, t is the time, σ0

dry is the backscattering coefficient
observed under completely dry soil conditions in decibels, and S is
the sensitivity in decibels of the σ0 to changes in soil moisture. A
change-detection approach was also applied by Zribi et al. (2011) to
a semi-arid region using high-resolution ENVISAT/ASAR data for soil
evaporation evaluation.

The relative SMC ranges from zero in dry soil to unity (or 100%) in a
completely saturated soil. This algorithmhas been adapted by Pathe et
al. (2009) to the ENVISAT/ASAR Global Monitoring (GM) time series.
By using the estimated model parameters σ0

dry and S, a relative sur-
face soil moisture index was retrieved from the extrapolated ASAR
GM measurements. Very recently, the same change detection algo-
rithm was tested using ENVISAT/ASAR wide-swath (WS) SAR time
series within the framework of an evaluation of potential SMC opera-
tional algorithms for the ESA Sentinel 1 mission (Hornacek et al.,
2012).

The aforementioned research suggests that multi-temporal ap-
proaches for retrieving SMC at regional scales from C-band SAR time
series can successfully account for surface roughness effects and, to
some extent, for low vegetation cover (≤1 kg/m2 of the biomass).
The main limitation is still the necessity for having sufficiently fre-
quent SAR acquisitions in order to ensure that the assumption of the
stability of roughness and vegetation conditions among the different
acquisitions remains still valid.

As an alternative to change-detection-based approaches, a feasible
strategy for developing single acquisition SMC retrieval algorithms is
based on the inversion of physical-based forward electromagnetic
models (Dubois et al., 1995; Fung, 1994; Oh et al., 1992, 2002; Shi et al.,
1997;Wu & Chen, 2004). Suchmodels provide a physical-based descrip-
tion of the interactions between microwave electromagnetic radiation
and real objects (e.g., bare or vegetated soils), thus enabling a simulation
of various experimental scenarios in terms of sensor configurations and
soil characteristics. This is a crucial property for ensuring generality and
for avoiding the dependence on local site and sensor conditions, which
are often common when dealing with empirical-based algorithms.
Once forward models have been validated, inversion algorithms that
make use of single- or multi-frequency or multi-polarization radar mea-
surements can be developed. However, the mathematical formulation of
these models is complicated and makes a direct inversion difficult.

The actual potential of forward model inversion in providing accu-
rate SMC maps has been investigated in various studies. In a recent
paper, Paloscia et al. (2008) compared the performance of three inver-
sion algorithms in providing SMC estimates from a series of co- and
cross-polarized single acquisition SAR images acquired by the
ENVISAT/ASAR sensor on an agricultural test site in Italy. The algorithms
taken into consideration were a feed-forward multilayer perceptron
(MLP) neural network, a statistical approach based on the Bayes
theorem (1958) and an iterative optimization algorithm based on the
Nelder and Mead (1965). The evaluation of the algorithms carried out
on the basis of estimation accuracy (error percentage), computational
complexity (the actual number of pixels processed per second) and po-
tential critical aspects (e.g., the dependence on auxiliary information or
the existence of boundary conditions) pointed out that:

• In general, the iterative optimization algorithm provides the highest
estimation accuracy. However, it greatly depends on the initializa-
tion of the inversion procedure and is extremely slow. This makes
it difficult to apply the procedure in vast regions, e.g., in the case of
global operational SMC products.

• The statistical approach based on the Bayes theorem provides com-
parable accuracy in the retrieval, showing at the same time greater
stability and fewer requirements for a priori information as com-
pared to the iterative algorithm. Again, the main limitation is repre-
sented by the rather high computational burden.

• The MLP neural network (ANN) technique shows slightly poorer,
but in general comparable, results compared to the iterative optimi-
zation algorithm. Its great advantage lies in the significantly reduced
computational time required during the prediction phase. This
makes the ANN technique particularly suitable for near real time
and operational SMC products, provided that a sufficiently robust
and representative set of samples is used during the training phase.

The effectiveness of the ANN inversion algorithm has been further
investigated in a subsequent study, in which it is applied to the retrieval
of soil moisture content from ENVISAT/ASAR imagery acquired in a
mountain area in the Italian Alps (Paloscia et al., 2010). Again, the per-
formances achieved were extremely promising even under these chal-
lenging operating conditions. The study also pointed out the potential
of the ANN technique in easily and effectively ingesting information
extracted from different sources in order to improve the retrieval pro-
cess, such as the NDVI index derived from optical remote sensing imag-
ery for taking into account the presence of vegetation on the ground.

The potential of machine learning methods for the inversion of for-
ward analyticalmodels and the retrieval of soilmoisturewas specifically
investigated also in the work carried out by Pasolli et al. (2011). In this
case, the ANN algorithm was compared with another state-of-the-art
method, namely Support Vector Regression (SVR), for the retrieval of
soil moisture in bare agricultural areas from C-band scatterometer
data. The analysis points out once more the good and similar retrieval
performances achieved by the two methods, despite the fact that the
SVR showed greater robustness in the presence of outliers and a higher
stability in the presence of a reduced number of reference training data.
This suggests, again, the importance of a robust and extensive reference
dataset for the training of the ANN technique.

The above-mentioned research clearly points out the potential of
the theoretical forward model inversion for dealing with the retrieval
of soil moisture content from SAR remote sensing data. The availability
in the near future of a regular, global and frequent coverage of the
Earth's surface with the upcoming satellite SAR systems, such as the
Sentinel-1 family, offers on the one hand the potential for fine-scale
and near-real-time SMC products and, on the other hand, calls for a
better investigation and assessment of theoretical forward model
based retrieval algorithms in a wide variety of land surface conditions.

Within the framework of the ESA-funded GMES Sentinel-1 Soil
Moisture Algorithm Development (S1-SMAD) project, an algorithm
based on the inversion of an analytical electromagneticmodel through
an ANN has been proposed and intensively validated in order to assess
its feasibility for the derivation of near-operational soil moisture con-
tent estimates for the Sentinel-1 mission. ESA requirements for GMES
SMC product to be matched were the following:
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• SMC accuracy: ≤5% in volume
• Spatial resolution: 1 km or less
• Timeliness: 3 h from observation in all cases

The aim of this paper is to present the main outcome of this re-
search activity, by detailing the main characteristics of the proposed
retrieval algorithm and discussing the results of the validation activity
that has been carried out.

The rest of the paper is organized as follows: Section 2 provides an
overview of the developed algorithm, based on Artificial Neural Net-
works (ANN); in Section 3, the experimental activities have been de-
scribed together with the test areas; and Section 4 describes the
algorithm test and validation. Section 5 contains some conclusions.

2. The ANN approach

The approach that we proposed is based on the work presented in
Paloscia et al. (2008), in which some popular inversion strategies,
based on statistical and iterative methods (namely, the Bayesian
approach, Nelder–Mead minimization, and Artificial Neural Network
– ANN – algorithms) were compared. The result of this comparison
was that ANN was found to represent the best compromise between
retrieval accuracy and computational cost. The algorithm used and
described in this paper is based on this first version, which has been
subsequently developed and improved. The present algorithm intro-
duced several innovations, which are not only represented by the
extended validation, but also by the correction for the effect of vegeta-
tion and the presence of a set of ANN able to couple with several sen-
sor configurations (e.g. only one polarization or the combination of
some of them). The structure of the algorithm is shown in Fig. 1,
which presents the flow chart of ANN.

This study pointed out that the main constraint for obtaining a
good accuracy with the ANN approach is the “robustness” of the train-
ing process, which needs to be representative of all the surface condi-
tions presented to the ANN during the operational use. The used ANN
is a feedforwardmultilayer perceptron (MLP), with two hidden layers
of ten neurons each (Hornik, 1989; Linden & Kindermann, 1989). In
order to generate a training set that would meet these requirements,
we followed these steps:

• Starting from the archive of past experiments on bare soils available
at IFAC, a dataset composed of backscattering coefficients (σ°) and
corresponding direct measurements of ground parameters was set
up. This dataset did not include the data collected on the four areas
(Scrivia, Cordevole, Matera and Alto Adige) that were considered
for the algorithm test and validation. This dataset was described
and used in several papers (e.g. Baronti et al., 1995; Macelloni et
al., 1999, 2002; Paloscia, 2002; Paloscia et al., 2004). The ground pa-
rameters included soil moisture and soil roughness, expressed as the
standard deviation of the heights (Hstd) and correlation length (Lc).
In this phase, we considered only bare surfaces, and disregarded
vegetation and vegetation effects. Since this dataset was not suffi-
cient for training the ANN and completely setting the neurons and
weights, the AIEM and Oh models (Fung, 1994; Oh et al., 2002; Wu
& Chen, 2004) were used for simulating co-polar and cross-polar
data, respectively, which were included in the training set. Mini-
mum and maximum values of the soil parameters measured during
the experimental campaigns (SMC, Hstd and Lc) were considered in
order to define the range of variability of each soil parameter.

• Using a pseudorandom function drawn from the standard uniform
distribution on the open interval (0,1), rescaled in order to cover
the range of each soil parameter, we generated input vectors for
the AIEM and Oh models, in order to simulate the backscattering
at VV, HH and HV/VH polarizations. More in detail the input param-
eters were:
a) Incidence angle, θ = random between 20 and 50°
b) Hstd = random between 1 and 3 cm
c) Lc = random between 4 and 8 cm
d) Dielectric constant derived from random values of SMC between

5% and 45% using the Dobson Model (Dobson et al., 1985).

Since the relationship between Hstd and Lc is rather complicated
and it is difficult to obtain reliable measurements of the Lc parameter,
we decided to keep these two quantities independent, associating one
random variable with each of these. This procedure was then iterated
10,000 times, thus obtaining a set of backscattering coefficients for
each input vector of the soil parameters.

The ANN training was carried out by considering the simulated
backscattering at the various polarizations and the incidence angle
as input of the ANN, and the soil parameters as outputs. Two different
ANNs were trained specifically for HH and VV polarizations. The con-
sistency between the experimental data and the model simulation
was verified before proceeding to the training phase.

After training, the ANNswere tested on a different dataset that was
obtained by re-iterating the model simulations as described above.
The use of a pseudorandom function prevented a correlation between
these two datasets: this fact was particularly important in order to
evaluate the capabilities of ANN to generalize the training phase and
to prevent the overfitting problem. Incorrect sizing of the ANN or in-
adequate training could cause the overfitting: the ANN returns out-
puts outside the training range (outliers) when tested with input
data that are not included in the training set.

The ANN performances were tested by considering several config-
urations of input/outputs, in accordance with the acquisition modes
of Sentinel-1, i.e. in VV, HH or HV/VH polarizations.

The least favorable situation corresponded with the availability of
images in single polarization only (VV or HH pol.), with no other infor-
mation on vegetation and without ancillary data. In this case, ANN
worked with the backscattering coefficient, σ°, and the incidence
angle as inputs, and SMC as output. The results of the test in both po-
larizations were very close, and showed the following statistical pa-
rameters: the determination coefficient (R2) is equal to 0.80, and
RMSE b 4 (% of SMC).

2.1. Vegetation corrections

2.1.1. Single polarization + NDVI
The approach proposed in the previous section cannot be consid-

ered suitable when vegetation covered surfaces are observed. The dif-
ferent soil and vegetation conditions strongly affect the relationship
between σ° and the moisture content of the soil. This is evident from
the diagram of Fig. 2, in which some experimental relationships be-
tween σ° and SMC obtained on various test sites are presented. It
can be noted that σ° exhibits the same sensitivity to soil moisture for
all the analyzed datasets, but with different biases, depending on the
different surface types and vegetation features of each test area. The
problem of taking into account the effects of vegetation within the al-
gorithm was therefore dealt with by adding a term related to vegeta-
tion cover to the formulation of the backscattering responses from
bare surfaces. By using the Radiative Transfer Theory as a basis, the
contribution of vegetation was modeled by considering both the vol-
ume scattering produced by vegetation and the attenuation effect of
soil under vegetation on the backscattering. The total backscattering
of the vegetated surface was derived from the backscattering of bare
surfaces, which was simulated by AIEM, using the so-called “Water
Cloud Model” (Attema & Ulaby, 1978; Bindlish & Barros, 2001;
Joseph et al., 2010). This model, which is characterized by a rather
simple implementation, simulates the backscattering of vegetated
surfaces as a function of the soil backscattering and the Vegetation
Water Content (VWC) by using two parameters (A and B) that have
been set up at two polarizations (VV and HH) on the basis of the avail-
able experimental data. Model simulations have been obtained setting
A = 0.0855 and B = 0.0126 at VV polarization, and A = 0.0467 and
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Fig. 1. The flow chart of the ANN algorithm.
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B = 0.0155 at HH polarization. VWC was computed from the NDVI
using the semi-empirical relationship below, which was obtained
from our data archives:

VWC ¼ 12:86�NDVI–2:25: ð1Þ

We can observe that this relationship, which was indeed validated
mainly for agricultural crops (not only cereals) and grass, is close to
others existing in literature (e.g. Jackson et al., 2004).

Fig. 3 represents the simulated values of σ° in VV polarization from
vegetated surfaces as a function of SMC, compared with the available
archive data. The experimental data are those of all the available
datasets, and were collected under different vegetation conditions,
ranging from agricultural crops to grassland and to alpine pastures.
The regressions obtained for model simulations and experimental
data were very close:

σB ¼ 1:98�ln SMCð Þ−13:19;R2 ¼ 0:38 ð2Þ
for model simulations and

σB ¼ 2:07�ln SMCð Þ−13:668;R2 ¼ 0:25 ð3Þ

for experimental data
Analogous results were obtained in HH polarization, as shown in

Fig. 4. In this case the regressions were:

σB ¼ 3:07�ln SMCð Þ–15:42 R2 ¼ 0:52
� �

ð4Þ

for model simulations and

σB ¼ 2:91�ln SMCð Þ–14:58 R2 ¼ 0:25
� �

: ð5Þ

for experimental data
As for the case of bare soils, two datasets of 10,000 simulated

values of σ° at the various polarizations were obtained by iterating
the model simulations with random inputs. The additional input
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parameter VWC was derived from NDVI values between 0.2 and 0.8,
according to Eq. (1). The first dataset was combined with half of the
experimental data in order to generate the training set, while the sec-
ond dataset was used to test the ANN after training. Two ANNs were
trained and tested for the two configurations: VV + NDVI and
HH + NDVI. The test resulted in the following figures: in the case of
HH polarization, the regression slope was 0.998, the determination
coefficient, R2 = 0.995 and the RMSE was 0.93 (% of SMC). Poorer re-
sults were obtained in the case of VV polarization, where the RMSE
increased up to 2.87 (% of SMC). The loss of accuracy in the case of
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Fig. 3. Comparison between simulated (blue triangles) and measured (red diamonds) σ°
in VV pol. as a function of SMC%. The continuous lines represent the regression equations:
σ°VV = 1.98ln(SMC) − 13.19 (R2 = 0.38) for model data, and σ°VV = 2.69ln(SMC) −
13.66 (R2 = 0.25) for experimental data.
VV polarization was confirmed when the algorithm was tested with
the experimental data.

2.1.2. Dual polarization without NDVI
When dual polarized (VV/VH or HH/HV) images are available,

without NDVI ancillary information, the sensitivity of each polari-
zation to the different surface features can be considered for
distinguishing certain surface types and for evaluating the effect
of the vegetation and soil conditions, in order to improve the ac-
curacy of SMC retrieval.

From an analysis of archive data available at IFAC, we found that the
PolarizationRatio, PR, i.e. the ratio between co- and cross-polarized back-
scattering coefficients (PR = σ°HH / σ°VH), exhibits a rather good sensi-
tivity to vegetation cover, expressed as NDVI (slope = −4.69), while
the sensitivity to the SMC is basically negligible (slope = −0.03), as is
evident from the diagrams of Fig. 5a and b.

This result was confirmed by model simulations. Fig. 6 represents
a comparison between simulated and measured (from the archives)
PR (HH/HV). The regressions obtained between PR and NDVI for
both the experimental data and the model simulations were very
close:

PR ¼ −4:69�NDVIþ 10:27 ð6Þ

for experimental data and

PR ¼ −4:17�NDVIþ 9:90 ð7Þ

for model simulations
Similar resultswere obtained for PR = VV/VH. By following the pro-

cedure described in the previous sections, two other ANNswere trained
and tested for the two combinations VV + VH andHH + HV,while the
PR was considered as a second input instead of NDVI. The results of the
test gave a R2 > 0.98 and a RMSE of about 1.3 (% of SMC) for both the
ANNs.

It should be noted that the ANN training is carried out “offline”, be-
fore applying the algorithm to the operational SMC retrieval. If new
datasets are made available, the training of the ANN can be updated
in order to improve the algorithm performances.



Fig. 5. a) and b): Polarizarion Ratio (PR) between σ°HH and σ°HV as a function of a) NDVI
and b) SMC.
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3. Experimental activities

TheANNalgorithmperformanceswere tested and subsequently val-
idated in the followingmain test sites (four in Italy, one in Australia, and
one in Spain), where SAR images and simultaneous ground truth data
have been collected for several years:

• Scrivia test site
• Matera test site
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Fig. 6. Simulated (red squares) andmeasured (blue diamonds) PR (HH/HV) as a function
of NDVI. The regression lines are the following: PR = −4.69 ∗ NDVI + 10.27, for exper-
imental data, and PR = −4.17 ∗ NDVI + 9.90, for model simulations, respectively.
• Cordevole test site
• Alto Adige test site
• Australian test site
• Spanish test site

In Table 1 the main characteristics of the test areas have been
summarized.

3.1. Scrivia test site

The Scrivia watershed, which is located in North-West Italy, is a flat
alluvial plain measuring about 300 km2, situated close to the conflu-
ence of the Scrivia and the Po Rivers. The site is characterized by
large homogeneous agricultural fields of wheat, corn, sugarbeet, and
potatoes (Paloscia et al., 2008).

From 2003 to 2009, the area was monitored by the ENVISAT/ASAR
images. These images were mainly collected in HH/HV polarizations
and at an incidence angle of 23°. Simultaneously with satellite acqui-
sitions, ground campaigns were carried out in two sub-areas along
the Scrivia river close to the town of “Castelnuovo Scrivia”, which is
at the confluence between Scrivia and Po rivers. The total extent of
the two areas is approximately 10 km2. The groundmeasurements in-
volved all the significant vegetation and soil parameters, such as plant
density, leaf and stalk dimensions, the number of leaves per plant,
plant water content (PWC), soil moisture content (SMC), and surface
roughness. The vegetation parameters were measured using conven-
tional methods, while the roughness measurements were obtained
by using a needle profilometer 1.2 m in length, with 0.5 cm interval
between pins. The statistical parameters for characterizing the rough-
ness, namely the standard deviation of the heights (Hstd) and correla-
tion length (Lc), were computed from the digitalization of the
measured profiles. To measure the average volumetric soil moisture
of the first soil layer (10–15 cm) Time Domain Reflectometry (TDR)
probes were used. At least 5–6 samples of SMC and vegetation were
collected for each field considered, while roughness was measured
along and across the rows. Table 2 contains a list of the SAR acquisi-
tions used in this work.

3.2. Matera test site

The Matera area, which is located in the Basilicata Region of
Southern Italy, has been intensively investigated in numerous remote
sensing campaigns, such as that of 1994 during the SIRC/XSAR mis-
sion. Between 2000 and 2003, series of campaigns were carried out
in order to monitor wheat growth. In this case, ground scatterometer
and satellite (ENVISAT-ERS) data were acquired over the test site,
along with extensive ground measurements (Mattia et al., 2003).
This is a predominantly agricultural area mainly devoted to the culti-
vation of wheat, which is usually sown at the end of December,
reaches its maximum growth at mid May, and is harvested approxi-
mately at mid June, depending on weather conditions.

During the 2008–09 campaigns, ground measurements of SMC,
Hstd, Lc and PWC were carried out in 5 fields. The ground measure-
ments were carried out following conventional methods similar to
the ones indicated for the Scrivia test site. In this case the roughness
profilometer has a length of 3 m and a distance between pins of
0.5 cm. The area investigated measured approximately 10 km by
10 km. The soil moisture levels changed from 7% in July to 35% in
April, due to the heavy and frequent rain events that occurred in
that period. The SAR images acquired are summarized in Table 3.

3.3. Cordevole test site

This watershed, which is located on the foothill of Mount Sella in
Northern Italy (Veneto region) was selected because of its relatively
smooth topography and the availability of its historical and topographic
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Table 1
Synopsis of the main characteristics of the test areas.

Test site Lat, Lon Main characteristics Climatic conditions Field measurements available
(ranges)

Scrivia 45.0 N,
8.8 E

Agricultural area
(corn, wheat, sugarbeet, potatoes)

Continental climate with moderately cold
winters and hot summers (annual rainfall:
600-700 mm)

Soil moisture (10–30%)
Soil roughness (1–3 cm)
Vegetation parameters

Matera 40.72 N,
16.61 E

Agricultural area
(cereals, mainly wheat)

Mediterranean climate with dry/hot summer
and rainy/mild winter
(annual rainfall: b500 mm)

Soil moisture (7–35%)
Soil roughness (1–3 cm)
Vegetation parameters
Meteorological data

Cordevole 46.51 N,
11.87 E

Mountain area
(grassland and pastures)

Alpine climate
(annual rainfall: 1220 mm,49% falls as snow)

Soil moisture (25–55%)
Vegetation parameters
Meteorological data

Alto Adige (Mazia Valley) 46.70 N,
10.62 E

Mountain area
(grassland and pastures)

Dry cold continental climate with strong
precipitation gradients. (annual rainfall: 600 mm)

Soil moisture (15–35%)
Vegetation parameters
Meteorological data

Australia (Yanco River) −34.97 S,
146.02 E

Pastures and cropland Semi-arid area (annual rainfall: 600 mm) Soil moisture (10–45%)
Meteorological data

Spain (Emporda) 42.2 N,
2.9 W

Agricultural area
(cereals, sunflower, corn, alfalfa)

Mediterranean climate with dry/hot summer and
rainy/mild winter (annual rainfall: 600–700 mm,
falling mainly in winter and spring).

Soil moisture (5–25%)
Vegetation parameters
Meteorological data

240 S. Paloscia et al. / Remote Sensing of Environment 134 (2013) 234–248
data. The area covers 95 km2 at a mean altitude of 1948 m asl, with a
mean slope inclination of 51%. In the middle of the basin, at the top of
Mount Cherz (2000 m asl), there is a fairly large plateau free of forests.

The site is equippedwith a corner reflector andwith ameteorolog-
ical station. During the ENVISAT passes, three ground campaigns were
carried out on 14 June, 19 July, and 27 September 2004. The measure-
ments included a photographic survey and measurements of soil
moisture (with a TDR probe) as well as fresh biomass of vegetation
(gravimetric method) in different parts of the site. At least 90 punctual
measurements were carried out during the campaign. In June and July,
a significant portion of the area was covered by rather dense grass,
which in September was almost dry. The mean value of the soil mois-
ture was close to 40% in June over 45% in July, and less than 35% in
September.

The ASAR images obtained over the area are summarized in Table 4.

3.4. Alto Adige/South Tyrol test site

The study area of the Mazia Valley, a side valley of the Venosta
Valley, is located in the South Tyrol region (Northern Italy). The catch-
ment area extends for about 100 km2, with an altitudinal range of be-
tween 920 m asl (Sluderno) and 3738 m asl (Palla Bianca). The site is
characterized by a mean annual precipitation (Mazia, 1580 m asl) of
525 mm. However, different moisture patterns can be observed,
which are mainly due to the irrigation practices in highly intensive
grasslands (in the valley floor) and the presence of small rivers that de-
scend from the mountain tops. Grasslands and pastures with heteroge-
neous characteristics in terms of vegetation species can easily be found
by moving from the lower altitudes to the higher ones. The area is
equipped with permanent stations for the measurements of air and
soil parameters. It is one of the test sites of the ESA AO project “SOFIA”
(Pasolli et al., 2011), mainly devoted to estimating soil moisture by
Table 2
ENVISAT/ASAR acquisitions over the Scrivia test site.

Dates Product Polarization Swath/θ

November 7, 2003 APP HH/HV 2/23°
April 30, 2004 APP HH/HV 2/23°
June 4, 2004 APP HH/HV 2/23°
October 22, 2004 IMS VV 2/23°
November 26, 2004 APP HH/HV 2/23°
May 30, 2005 APP HH/HV 2/23°
September 26, 2008 IMS VV 2/23°
April 24, 2009 IMS VV 2/23°
May 29, 2009 IMS VV 2/23°
using fully polarimetric RADARSAT2 images. Radarsat2 acquisitions
over this area are listed in Table 5.

Two field measurement campaigns were carried out in the Mazia
valley at the same time as the satellite acquisitions.

Samples of grass and soil were collected in order to obtain accurate
measurements of biomass, vegetation water content, soil gravimetric
moisture and bulk density. Moreover, also non-destructive measure-
ments of SMC, by using a TDR sensor, were carried out.

3.5. Australian test site

The Australian test site was chosen in order to test the algorithm in
meteorological and climatic conditions far from the Italian test sites.
The soil moisture ground measurements are available through the
website: http://www.ipf.tuwien.ac.at/insitu/index.php/in-situ-networks.
html, which collects and shares out ground truth information in test
sites distributed world-wide, which are connected through the Interna-
tional Soil Moisture Network (Dorigo et al., 2011).

The test site is part of theOzNet network (http://www.oznet.org.au/),
which is located in the south-eastern part of the Australian continent. A
60 × 60 km2 area to the south and west of the Yanco Research Station
was considered for the algorithm test. The Yanco river basin is located
in a partially semi-arid area of the Australian interior, west of Canberra,
where the annual rainfall amounts to between 600 and 800 mm. The
area is cropped with pastures and cereals. There are 37 soil moisture
sites distributed across the Yanco study area with soil moisture data
recorded since 2003 or, in some cases since 2009. The ground data avail-
able are:

- Soil moisturemeasurements (with an interval of 30 min at an inte-
grated depth of 30 cm)

- Soil temperature (with an interval of 20 min)
- Rainfall gauge with a tipping bucket.

As auxiliary information, the land cover-land use from Globcover
was used to select themain classes of land-use forwhich SMC retrieval
is not possible (Globcover Product Manual, 2008) (Bicheron et al.,
Table 3
ENVISAT/ASAR acquisitions over the Matera test site.

Dates Product Polarization Swath/θ

July 13, 2008 APS HH/HV 2/23°
October 10, 2008 APS HH/HV 2/23°
May 7, 2008 IMG VV 2/23°
April 11, 2009 APS HH/VV 3/26°

http://www.ipf.tuwien.ac.at/insitu/index.php/in-situ-networks.html
http://www.ipf.tuwien.ac.at/insitu/index.php/in-situ-networks.html
http://www.oznet.org.au/
https://www.researchgate.net/publication/50829212_The_International_Soil_Moisture_Network_A_data_hosting_facility_for_global_in_situ_soil_moisture_measurements?el=1_x_8&enrichId=rgreq-99186f47fa6a84369f564719878cf995-XXX&enrichSource=Y292ZXJQYWdlOzI2ODE5NjUzNDtBUzoyMDE0NDIyNjc3OTk1NTJAMTQyNTAzODk4NzkzMQ==


Table 4
ENVISAT/ASAR acquisitions over the Cordevole test site.

Dates Product Polarization Swath/θ

June 14, 2004 IMS VV 2/23°
July 19, 2004 IMS VV 2/23°
August 23, 2004 IMS VV 2/23°
September 27, 2004 IMS VV 2/23°
November 1, 2004 IMS VV 2/23°

Table 6
ENVISAT/ASAR acquisitions over the Australian test site.

Dates Product Polarization (track) Landsat (path/row)

12 July,2004 IMS VV-I2 (302) 10 June 2004 (92/84)
5 September, 2005 IMS VV-I2 (302) 17 Sept 2005 (92/84)
19 December, 2005 IMS VV-I2 (302) 20 Nov 2005 (92/84)
16 February, 2009 APS VV–VH-I1 (302) 31 Jan 2009 (92/84)

Table 7
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2008). The Globcover is a product derived from an automatic and
regionally-tuned classification of a time series of MERIS FR mosaics.
Its 22 land-cover global classes are defined with the UN Land Cover
Classification System (LCCS). The product covered the period from
December 2004 to June 2006.

For EO data from the ESA–EOLI catalog, four ENVISAT/ASAR images
are available for this area and are listed in Table 6. Images acquired in
different seasons were selected, in order to have a wide range of soil
moisture and vegetation conditions. Unfortunately, all images are in
VV polarization, which was found not to be an optimal polarization
for soil moisture retrieval. VV polarization is, in fact, strongly attenuat-
ed by vegetation characterized by thin vertical stems and narrow long
leaves, such as cereals and grass. Landsat images acquired in periods
close to the ENVISAT passes were used as auxiliary information in
order to take into account the effect of the vegetation.

3.6. Spanish test site

Another area was selected in Spain (Emporda) for additional tests
and for a validation of the algorithm. Six in-situ measurement cam-
paigns of gravimetric soil moisture, soil texture and plant water con-
tent were organized in 24 fields.

The 6 campaigns took place on the following dates: 10 May, 14
June, 23 August, and 27 September 2010, 25 February and 22 June
2011 (Table 7). The fields were chosen to account for different types
of cultivations and soil types. The evolution of soil moisture was
followed during the period from May 2010 to June 2011 and was in
line with the seasonal trend, typical of the Mediterranean environ-
ment, with a decrease in soil moisture between May and August and
an increase during the autumn and winter months. The weather dur-
ing the period was monitored by several meteorological stations. The
2010 spring and summer were relatively dry, with very few rain
events. This was reflected in the soil moisture measurements, which
were all quite low. The month of February 2011 was also relatively
dry, with few precipitations and higher temperatures than the mean
ones for that period.

4. Algorithm validation

The ANN algorithmwas validated on the six test areas described in
the previous section.

4.1. Scrivia

The first test and validation of the proposed algorithm was carried
out on the Scrivia test site, by considering the available ENVISAT/ASAR
images (Table 2). Unfortunately, due to several user conflicts for
Table 5
SAR (RADARSAT2) acquisitions over the Alto Adige/South Tyrol test site.

Dates Polarization Swath/θ

May 1, 2010 HH-VV-HV-VH 42°–45°
June 3, 2010
Northern Italy, few dual polarized images could be obtained, and sev-
eral single polarized images were in VV pol., instead than in HH pol.
The latter was demonstrated to be more suitable than the VV for esti-
mating soil moisture, due to the less pronounced masking effects of
vegetation.

In order to compare the C-band backscatter with data collected
on ground, the ASAR images were calibrated, and then geocoded
using a regional map of the site (scale 1:10,000) so that the correct
areas, i.e. where the ground measurements were carried out, could
be identified with the precision of one pixel. In this case, ground
truth and backscattering measurements were averaged field by
field over at least 200 pixels each, making any further filtering
meaningless.

Fig. 7 represents the relationships obtained between the SMCmea-
sured and estimated by the ANN algorithm in the two configurations –
(a) single polarization and (b) dual polarization – on the 23 “refer-
ence” fields, by considering the data collected from November 2003
to June 2004. The comparison was obtained by averaging both ground
and backscattering data at field resolution.

The regression obtained for the “single-pol.” algorithm was
R2 = 0.78, and RMSE = 2.75% SMC, while the “dual-pol.” algorithm
made possible a retrieval with R2 = 0.85 and RMSE = 2.15% SMC.

It should be noted that the results presented for the Scrivia test site
were obtained by using only the SAR backscattering as input for the al-
gorithm, without any ancillary information from optical/land cover to
correct for the vegetation and roughness effects. In fact, the different
response of the SAR backscattering in different polarizations to the
surface features can be used for identifying certain surface types and
evaluating the effect of the vegetation and soil conditions on the
SMC retrieval. The contribution of the cross-polarized backscattering
to enhancing the retrieval accuracy is evident from Fig. 7a, which rep-
resents the results for the “single polarization” algorithm. We can see
that the retrieval error is higher for the intermediate SMC values,
which were collected in extremely dissimilar conditions of roughness
and vegetation, while the low and high SMC, which were recorded in
similar conditions of vegetation and roughness, had a better retrieval.
The “dual-pol.” algorithm, is able to overcome this problem, thus in-
creasing the retrieval accuracy of intermediate SMC values as well
(Fig. 7b).

The SMC maps obtained from the single-pol. images for the 2009
spring are presented in Fig. 8 and refer to the area surrounding
Castelnuovo Scrivia. Because of the limited dimensions of the area rep-
resented and the target resolution for the Sentinel application (1 km),
the validation of these maps was limited in this case to the SMC esti-
mates and corresponding ground truth averaged over the test area,
which are highlighted by red circles. The average values obtained are
those listed in the table beside the map.
ENVISAT/ASAR acquisitions over the Spanish test site.

Dates Product Polarization Track

10 May, 2010 WSM VV 201
14 June,2010 WSM VV 201
23 August, 2010 WSM VV 201
27 September, 2010 WSM VV 201
25 February, 2011 WSM VV 15
22 June, 2011 WSM VV 403



Fig. 7. SMC retrieved vs. SMC measured on ground (left) “single-pol.” algorithm and (right) “dual-pol.” algorithm for the Scrivia test site. The computed regression equations are:
SMCest = 1.013SMCmeas − 2.01 (R2 = 0.78 and RMSE = 2.75% SMC) for the “single-pol.” algorithm, and SMCest = 1.029SMCmeas − 1.69 (R2 = 0.85 and RMSE = 2.15% of
SMC) for the “dual-pol.” algorithm.

Date          SMC meas. SMC ANN

24/04/09

29/05/09

29 May, 2009 

24 April, 2009 

10 Km

∼30%

∼23%

∼28%

∼21%

Fig. 8. SMC maps obtained from the single-pol. ENVISAT/ASAR images collected on the area of Castenuovo Scrivia in April and May 2009. Urban, water bodies, and dense vegetation
areas have been masked in black, blue, and magenta, respectively. In the table on the left-top side of the image, the average values of SMC (measured on ground and estimated by
the ANN algorithm) for the entire image were reported.
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Table 8
SMC values estimated from the ANN with and without NDVI data, as compared with
the average ground measurements for the Matera test site.

Date Mean NDVI SMC ANN
w NDVI

SMC ANN
w/o NDVI

Ground measurements

May 2008 0.55 15.0% 20.5% 13%
July 2008 0.27 7.9% 14.5% 7%
October 2008 0.29 27% 40.8% 25%
April 2009 0.50 22.5% 22.6% 25%
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4.2. Matera

The algorithm test and validation were subsequently extended to
the other test sites, in order to confirm the validity of the algorithm in
Fig. 9. SMC maps derived from the ENVISAT/ASAR images available for the Matera test are
masked in magenta, blue, and dark green, respectively.
areas characterized by different climatic and vegetation conditions.
Themethodology was first tested on the agricultural test site of Matera,
using 4 available ENVISAT/ASAR images and the corresponding aver-
aged ground measurements. The results, which are indicated in
Table 8, were then further compared with the values of SMC obtained
by considering the ANN for bare surfaces, without accounting for vege-
tation. The results indicate a notable improvement in the estimate
when theNDVIwas available. The values indicated in the tablewere av-
eraged over the area pointed out by red circle in Fig. 9. A statistical anal-
ysis of the results gave a RMSE = 1.8%SMC and Bias = 0.75%SMC, for
ANN with NDVI, and RMSE = 9%SMC and Bias = 7.25%SMC for ANN
without NDVI.

Extensive SMC maps of the agricultural area surrounding Matera
were generated by the algorithm and were represented in Fig. 9. The
a. Red circles identify the study area. Urban areas, water bodies and forests have been
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values of estimated SMC are in linewith themeteorological conditions
of the area and with the typical Mediterranean climate, which is usu-
ally characterized by very rainy springs and dry summers.

4.3. Cordevole

A further test of the algorithm was attempted on the mountainous
test area of the “Cordevole” basin, an area that is characterized by a
completely different surface cover, in order to better evaluate its capa-
bilities in adapting to the different vegetation conditions. The algorithm
was applied to the three available ENVISAT/ASAR images of the
Cordevole watershed (about 7 km × 15 km), which were collected on
14 June, 19 July and 27 September 2004. Once again, backscattering
values were extracted and compared with ground measurements of
SMC. The effect of topography was accounted for using a LIA (Local In-
cidence Angle) map as an input of the ANN. Data corresponding to inci-
dence angles outside the training range (i.e. 20–50°) were disregarded.
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Fig. 11. Algorithm outputs vs ground measurements for the Alto Adige test area. The re-
gression equation is: SMCest = 0.88SMCmeas + 4.72 (R2 = 0.67, RMSE = 4.91%SMC,
and Bias = 1.55%SMC).
Moreover, areas showing layover and shadowing have beenmasked out
before the processing. Unfortunately, the fairly constant SMC values
recorded during the three field campaigns did not enable us to obtain
a wide temporal variation, because the mean value of the measure-
ments carried out for each campaign ranged between 25% and 30% for
September and the 45% for July. Therefore, the algorithm output was
represented after dividing the range of SMC measurements into 4 clas-
ses of between 25% and 45% in steps of 5%. A comparison between the
ANN-estimated and the ground-measured SMC is shown in the histo-
gramof Fig. 10. TwoANNswere considered: one used only VV polarized
data, while the secondone also used the vegetation information derived
from NDVI. The ANN using also vegetation information wasmore capa-
ble of reproducing the level of the data, even if with a few
underestimations.

4.4. Alto Adige/South Tyrol

The algorithm was applied also to the available images collected
from RADARSAT2 and acquired on 3 June 2010 over a mountain test
site in the South Tyrol region (Northern Italy). In this case, the average
of the groundmeasurements was 27.7% and the corresponding average
of the algorithm outputs was 26.3%. Also in this case, the LIA map was
considered for compensating the topography effect and areas showing
layover and shadowing were masked out before the processing.
Fig. 11 represents a scatterplot of the comparison between the averaged
values of the ground measurements and the corresponding algorithm
estimates. In this case, R2 = 0.67, and RMSE = 4.91%SMC, and
Bias = 1.55%SMC.

4.5. Australia

The fourth validation was carried out on the Yanco River test areas
in Australia. If we examine the rainfall and soil moisture data mea-
sured at the meteorological stations in the area during the winters of
2004 and 2005, and the summer of 2005, the highest values of soil
moisture were found in September. The entire area shows very high
NDVI values (>0.4) in almost all seasons, except July (dry season).
The availability of VV polarization only and the high NDVI values lim-
ited the performances of the algorithm. Moreover, the presence of
wheat or other cereals produced lower values of σ°, as compared
with the expected ones, when the plants were well-developed.
0

10

20

30

40

50

0 10 20 30 40 50

S
M

C
 e

st
im

at
ed

 (
%

)

SMC measured (%)

Fig. 12. Soil moisture measured on ground as a function of soil moisture estimated by
the algorithm for the Australian test area. The regression equation is: SMCest =
0.57SMCmeas + 8.17 (R2 = 0.62, RMSE = 5.58%SMC, and Bias = −1.85%SMC).
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Fig. 12 contains a scatterplot of the soil moisture measured on
ground at various meteorological stations, in different seasons, vs. the
soil moisture estimated by the algorithm. From the diagram it is evident
that, in spite of the non optimal observation conditions (VV pol. and
high NDVI), the algorithm was able to retrieve the soil moisture values
with a fairly good accuracy (R2 > 0.6 and RMSE = 5.58%). The algo-
rithm underestimated the soil moisture values but this was because
a b

c d

Fig. 13. Soil moisture maps of the area obtained by using this algorithm (a: July 12, 2004; b:
masked areas: i.e. dense vegetation, water bodies, urban areas.
the SMC was measured on ground in an integrated layer of 30 cm,
which is usually moister than the surface layer.

The corresponding soil moisture maps of the area obtained by
using this algorithmare shown in Fig. 13: a) July 12, 2004; b) September
5, 2005; c) December 19, 2005; and d) February 16, 2009. A significant
moisture variation depending on the season, the rainfall and the ground
measurements, is evident from the maps. As expected, the February
September 5, 2005; c: December 19, 2005; d: February 16, 2009). Black spots represent



Table 9
Validation results, obtained over the test site in Spain, by considering (a) or disregarding
(b) NDVI information. In gray, the couples of values SMC estimated/SMC measured, for
which the NDVI information worsened the results, have been singled out.

a

Acquisition date

10 May, 2010 16.11 24.05 5.34 3.45

14 June, 2010 12.66 14.35 3.52 2.66

23 August, 2010 10.18 7.86 3.41 2.19

27 September, 2010 17.19 14.99 6.38 4.76

25 February, 2011 13.74 21.41 4.58 0.69

22 June, 2011 11.58 10.85 4.35 3.44

Mean 4.60 2.87

b

10 May, 2010 20.06 24.05 2.72 0.97

14 June, 2010 16.37 14.34 4.01 2.69

23 August, 2010 16.65 7.85 8.50 2.90

27 September, 2010 17.92 14.99 5.12 3.23

25 February, 2011 20.31 21.40 2.31 0.58

22 June, 2011 16.39 10.85 5.21 1.71

Mean 4.64 2.01

(%) 
SMC ANN

(%)
SMC ground RMSE

(%)
St. Dev.

(%)

Acquisition date
(%) 

SMC ANN
(%)

SMC ground RMSE
(%)

St. Dev.
(%)

246 S. Paloscia et al. / Remote Sensing of Environment 134 (2013) 234–248
map,which corresponds to the end of the dry season, shows the low-
est values of soil moisture, whereas September shows the highest
ones. Pasture areas, which are spread along the banks of rivers,
show the lowest values of soil moisture as compared to those of
the agricultural areas.
4.6. Spain

A final validation was subsequently carried out between 2010 and
2011 in the test area of Emporda, in Spain. Six in-situ campaigns were
organized in 24 fields, where ground data of SMC, soil texture and
plant water content were collected. Six corresponding ENVISAT/ASAR
images, in VV pol., were collected over the area, while the correspond-
ing NDVI maps were derived from MODIS.

Table 9a summarizes the results obtained for this test area. It
should be noted that, although the RMSE was in line with the results
of the other test areas (i.e. b5%SMC), the availability of VV polarization
only and the low resolution of NDVI maps (500 × 500 m2) slightly
hampered the retrieval accuracy. Indeed, the fields investigated are
often smaller than 1 pixel in the NDVI maps and are surrounded by
forested areas. The NDVI associated with each field also accounts for
the surrounding forest, and therefore cannot be considered represen-
tative of the true field conditions. These inaccurate NDVI values
influenced the SMC retrieval, especially during the spring and autumn,
when the vegetation cover is extremely variable in the area.Moreover,
the average NDVI values in February were extremely high (0.6–0.9),
and were inconsistent with the bare soil conditions of most of the
fields.

The tests were therefore repeated, with the NDVI being disregarded:
the results are summarized in Table 9b. A comparison of the results be-
tween Tables 9a and b points out that, without NDVI, the accuracy im-
proved in February and also in the autumn and spring, when the low
resolution NDVI maps could not be representative of the high spatial
variability of vegetation conditions. On the other hand, in the summer,
when the vegetation was well-developed, and NDVI was consequently
almost uniform, the low spatial resolution was less critical and the use
of NDVI made possible an improvement in the retrieval accuracy.

4.7. Summary of validation results

By considering all the ENVISAT/ASAR images available on the 6
test areas and the ground truth measurements, it was possible to
set up a dataset of about 600 field-averaged values of backscatter-
ing and the corresponding SMC measured on ground. Depending
on the available input data, the algorithm performed a selection
of the most appropriate ANN among the ones developed and
described in Section 2. Six different configurations were defined
as follows:

1. VV polarization only, without NDVI
2. HH polarization only, without NDVI
3. VV polarization and NDVI
4. HH polarization and NDVI
5. VV and VH polarizations
6. HH and HV polarizations

The results obtained are presented in the following diagrams of
Fig. 14(a–d). As expected, the VV polarization gave the poorest results,
while ancillary information on NDVI, when available, and made possi-
ble an increase in the retrieval accuracy. Unfortunately, most available
images were obtained in this configuration, due to ESA's ordering pol-
icy. The HH polarization was more correlated to the SMC, and also in
this case, the use of NDVI increased the retrieval accuracy. Themost fa-
vorable results were obtained when co- and cross-polarizations were
available.

More in detail, Fig. 14 represents the SMC estimated by the algorithm
as a function of the SMC measured on ground, at field scale, for the data
available in VV polarization, with and without the NDVI. The latter input
made possible an increase in the determination coefficient R2 from0.495
to 0.65 (see Table 10,where the statistical parameters obtained from this
comparison – R2, RMSE, and Bias – are listed for each ANN).

Fig. 14b represents the results obtained using the HH polarization
and the HH polarization + NDVI. The HH polarization appeared to be
more indicated for SMC monitoring purposes, and the NDVI contribu-
tion increases the retrieval accuracy also in terms of the regression
slope from 0.78 to 0.88, whereas R2 slightly improves from 0.85 to 0.86.

The case of theVV andVHpolarizations is shown in Fig. 14c. The SMC
estimates obtained by using the dual-pol. ANN are comparedwith those
generated by the ANN for single-pol. and single-pol. + NDVI. Unfortu-
nately, only very few data were available for this configuration and for
a limited range of SMCmeasured on ground. However, the accuracy im-
provement produced by the simultaneous use of two polarizations is ev-
ident: R2 changes from very negligible values up to as much as 0.59
(VV + VH polarizations).

Finally, the case of HH combined with d HV polarization is
presented in Fig. 14d. R2 changed from 0.80 for only HH pol. to 0.87
for HH + VH polarizations. As expected, this was the combination
that provided the best performances, but satisfactory results were
also obtained by using the two ANNs for HH polarization only and
HH polarization + NDVI, respectively.

5. Conclusions

The SMC product, to be generated from Sentinel-1 data, requires an
algorithm capable of processing operationally in near-real-time and of
delivering the product to the GMES services within 3 h from the mo-
ment of observations. The proposed approach is based on an Artificial
Neural Network (ANN) thatwas chosen as it represents a good compro-
mise between retrieval accuracy and processing time, thus allowing
compliance with the timeliness requirements. The algorithm was de-
veloped so as to ingest different inputs based on the possible configura-
tions of the Sentinel-1 system.
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Fig. 14. a: SMC estimated by the algorithm as a function of the ground truth, in cases of VV polarization only, and VV pol. + NDVI. b: SMC estimated by the algorithm as a function of
the ground truth in cases of HH polarization only and HH pol. + NDVI. c: SMC estimated by the VV + VH algorithm as a function of the ground truth. d: SMC estimated by the
algorithm for the case of HH + HV, as a function of the ground truth.
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Depending on the available input data, the algorithm performs a se-
lection of the most appropriate ANN, among 6 different configurations:
1) VV polarization with and without NDVI, 2) HH polarizationwith and
Table 10
Statistical parameters (R2, RMSE and Bias) of the SMC retrieval by using different ANN,
depending on to the available polarizations and ancillary information.

ANN R2 RMSE Bias

Single polarization (HH or VV)
VV 0.495 6.68 −0.14
VV + NDVI 0.650 5.27 0.99
HH 0.854 2.60 −0.33
HH + NDVI 0.881 2.32 1.06

Dual polarization (VV + VH or HH + HV)
VV 0.004 6.08 5.40
VV + NDVI 0.011 5.47 3.53
VV + VH 0.590 1.67 −0.98
HH 0.797 3.15 1.57
HH + NDVI 0.811 3.44 −0.10
HH + HV 0.872 2.83 −0.98
without NDVI, 3) VV polarization with NDVI, 4) HH polarization with
NDVI, 5) VV and VH polarizations, and 6) HH and HV polarizations.

The ANN algorithm was validated in six test areas: Alessandria,
Cordevole, Matera and Alto Adige in Italy, Australia, and Spain.

The retrieval accuracy for volumetric SMC, according to GMES S1 re-
quirements,was≤5%, and thiswas fulfilled bymost of the SMC estimat-
ed values. However, the validation results obtained in Spain were
penalized by the availability of only VV polarization SAR images and
MODIS low-resolution NDVI, although the RMSEwas in any case slight-
ly >4%. The accuracy (RMSE) of the algorithm ranges indeed from
around 2% of SMC, when even HV polarization is available, to 6% of
SMC in the worst case, when only VV polarization is present. As far
the processing time is concerned, the ANN algorithmmakes a rapid in-
version possible, in the order of the timeliness required (i.e. 3 h from
observation). The inversion is carried out for each pixel of input
image, and the algorithm is able to process about 200,000 pixels/s. For
an input SAR image of 100 × 100 km2 at 25 m resolution, the whole
process takes about 80 s to generate the corresponding SMC map at
the same spatial resolution. If a lower spatial resolution is required,
resampling of the input backscattering can be performed in order to fur-
ther reduce the processing time.
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Considering that the algorithmneeds to act upon global conditions,
the best performances are obtainedwhen information on vegetation is
available, in terms of either cross-polarized channel or NDVI informa-
tion. The cross-polarized channel (e.g. HV) helps to disentangle the ef-
fect of vegetation. If optical images are available, NDVI information is
able to improve the retrieval performances. It is worthwhile mention-
ing that NDVI can be considered as a key factor in determining a reli-
able SMC estimate, when only VV polarization is available. In this
context, the forthcoming combination of Sentinel 1 and 2 satellites
represents an ideal case to have reliable estimates of SMC at high tem-
poral and spatial resolution.
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