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a.hooper@leeds.ac.uk 
 
This practical exercise consists of working through an example data set acquired by the 
Sentinel-1 satellites over Mexico City between November 2015 and October 2016. 
StaMPS can be used for PS or small baseline analysis (or both combined) but in this 
practical you will use StaMPS to carry out PS processing only. 
 
The StaMPS manual can be found at: 
http://homepages.see.leeds.ac.uk/~earahoo/stamps/StaMPS_Manual_v4.1b1.pdf 
 
N.B. Not all of the functionality in this practical is detailed in the manual 
 
 

1. Pre-processing 
The pre-processing steps consists of forming a stack of co-registered single-master 
interferograms. This can be achieved using a number of different softwares, including 
SNAP, Gamma, ISCE, Doris. For this tutorial, we will use 18 single master interferograms 
produced using SNAP. Instructions for using SNAP to form the interferograms are not 
included here, but details on how to prepare data in SNAP and export to StaMPS can be 
found at https://github.com/mdelgadoblasco/snap2stamps. 
 
Candidate PS pixels have also already been selected from the interferograms using 
mt_prep_snap (see beginning of Chapter 4 in the StaMPS manual) The pixels selected 
have amplitude dispersion < 0.4, where amplitude dispersion is the ratio of amplitude 
standard deviation to mean amplitude. For efficiency reasons, StaMPS divides the region 
in the interferogram crop into overlapping patches, each of which are processed 
independently for the initial 5 steps. In this case I have selected 10 patches in range and 
10 in azimuth, giving 100 patches in total. 
 
Now you can get going with the time series analysis. StaMPS consists of command line 
binaries and matlab functions, but for this practical you will only need to execute the 
matlab functionality. You will need to open linux on your PC using ‘nomachine’.  

2.	PS	Selection	

2.1	Open	StaMPS	environment	
The first time you run StaMPS, you need to set up the environment file, which tells linux 
where to find the StaMPS programs. To do this, double click on the delegateXXXXX icon 
on the Desktop. Select the STAMPS icon, followed by StaMPS-master. Select 
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StaMPS_CONFIG.bash and ‘Display’. In the top line, change the delegate number to your 
own, save and close. 
 
Double click on the delegateXXXXX icon on the Desktop again. Right click select 
STAMPS_DATA and select ‘Open in Terminal’. To source the environment you just set up  
for StaMPS, within the Terminal window that opens, enter 
$source ~/STAMPS/StaMPS-master/StaMPS_CONFIG.bash 

 
Change directory to the location of the preprocessed data by entering: 
$cd INSAR_20160606 

List the files with:  
$ls 

Most of the input data are in the individual PATCH_ directories, but a few common input 
files are in the INSAR_20160606 directory itself. 
 
Next ,start Matlab by entering within the terminal:  
$module load matlab 

$matlab 

 
The rest of the practical is controlled from the Matlab window that opens up.  

2.2	Load	PS	candidiates	
By default StaMPS will cycle through all patches. However, it is a good idea to run Steps 1 
to 5 for one patch only to start with, in order to optimise the processing parameters for your 
data set. You can do this by changing directory to the PATCH_34 directory before 
continuing by entering in Matlab: 
>> cd PATCH_34 

Step 1 of StaMPS loads the data for the selected candidate PS pixels into matlab, and 
stores them in matlab workspace files. To run this step enter: 
>> stamps(1,1) 

The two parameters (1,1) given with the stamps command represent the step you wish to 
start at (first parameter) and the step you want to end with (second parameter). The above 
command will thus only run the 1st step.  
 
Several workspace files are created with a “1” appended indicating that they contain data 
relating to candidate pixels (as opposed to “2” for selected pixels). You can list these by 
entering: 
>> ls *1.mat 

Check the phase of the candidate PS: 
>> ps_plot(‘w’) 

You will notice that a lot of pixels have been selected as initial PS candidates, and many of 
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them look quite noisy. The June 2016 interferogram uses the same image for master and 
slave, and hence has zero phase throughout. 
 
The ps_plot command has a lot of functionality, which you can check by typing  
>> help ps_plot 

The help command can be used to get more info for any of the StaMPS commands. 
 
Plot the 2nd interferogram only, using the mean amplitude of all images as background: 
>> ps_plot(‘w’,5,0,0,2) 

The defaut size of the plotted points (120 m) means that they merge into one another. You 
can change the size to 30 m by entering: 
>> setparm('plot_scatterer_size',30) 

The first input given to setparm is a string with the parameter name you want to change, 
and the second input is the value you want to set it to. The parameter name string given to 
setparm only has to be long enough to make it unique (you will be warned if ambiguous), 
so the following command would work as well (try it): 
>> setparm('plot_s',30) 

You can list all of the StaMPS parameters by entering: 
>> getparm 

Plot the 2nd interferogram again with smaller plotted points (the ‘up’ cursor key in Matlab 
retrieves earlier commands that you entered). You will notice that many candidate pixels 
are selected in a dark patches, which are bodies of water. This demonstrates that 
amplitude dispersion (used for candidate selection) is not a perfect proxy for phase noise. 
 

2.3	Calculate	temporal	coherence	
This step estimates the spatially correlated phase for each PS candidate, subtracts it, 
estimates the spatially-uncorrelated DEM error for each pixel from the remaining phase, 
subtracts this and finally estimates the temporal coherence for each pixel from the residual 
phase. This process is iterated three times by default. To run this step enter: 
>> stamps(2,2) 

 

2.3	Initial	PS	selection	
This step makes a selection of PS based on probability, by comparison to results for 
simulated data with random phase. This is usually done twice. After the first selection, the 
temporal coherence of each selected pixel is re-estimated more accurately, by dropping 
the pixel itself from the estimation of the spatially-correlated phase, and then the selection 
process is repeated. This second selection is quite slow, so to speed things up, I have set 
‘select_reest_gamma_flag’ to ’n’, which skips the re-estimation. Run step 3: 
>> stamps(3,3) 

The main parameter that controls the number of PS selected is ‘density_rand’, which 
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refers to the average density of PS pixels per square kilometre that are selected in error. 
Normally it is good to leave this high, as these random phase pixels can be weeded out in 
Step 4, or in Step 5 if the data are to be downsampled. Try changing it to values between 
1 and 100 and rerunning Step 3, and note the effect on the number of pixels selected. E.g: 
>> setparm(‘dens’,1) 

>> stamps(3,3) 

2.4.	PS	weeding	
In Step 4, some PS pixels selected in the previous step are dropped based on their 
proximity to each other and the smoothness of their deformation in time. The proximity 
weeding is turned off however (‘weed_neighbours’ = ’n’). 
>> stamps(4,4) 

2.5	Phase	correction		
The phase of the remaining selected pixels is corrected for spatially-uncorrelated DEM 
error and stored as “version 2” (PS candidates were version 1).  
>> stamps(5,5) 

This produces several new workspace files with a “2” appended. 
>> ls *2.mat 

Now it is possible to plot the phase of the selected pixels 
>> ps_plot(‘w’) 

Check the coherence by visually scanning the phase of each interferogram. How does this 
relate to the estimated phase standard deviations output by Step 5? Try plotting an 
individual interferogram, e.g. to plot the tenth one: 
>> ps_plot(‘w’,1,0,0,10)  

Have most of the pixels in the water been dropped? Check the amplitude of points 
remaining in the water – could here be something solid projecting from the water acting as 
a PS (N.B. You can zoom in and out)?  

2.6.	Iteration	of	Steps	
Try changing the ‘weed_standard_dev’ parameter to 1.2 (this is the threshold standard 
deviation in radians) and rerunning steps 4 to 5. How does this change things?  
 
Steps 4 and  5 are quick, so try playing with ‘weed_standard_dev’. You want to end up 
choosing a value that balances selecting the maximum amount of points with reducing the 
noise levels. Increasing the threshold from 1 to 1.2 increases the number of selected 
points without increasing the noise levels by too much. The increased number of points is 
useful, since it improves the coverage and the amount of deformation information. 
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3.	Merging	Patches	
You can now add patches 11 to 17, 21 to 27, 31 to 37, 41 to 47, 51 to 57 and 61 to 67 to 
the processing chain. By default, StaMPS processes all patches. To tell stamps to use 
only these patches, edit the file named ‘patch.list’ in the INSAR_20160606 directory and 
list the patches you want to include in this file: 
>>cd .. 

>>edit patch.list 

For the other patches, Steps 1 to 4 have already been run for you. Now that you have run 
PATCH_34, you are ready to merge them together. You can achieve this by running step 5 
in INSAR_20160606. You can now plot the wrapped phase for the merged patches by 
running ps_plot within INSAR_20160606. Note, set ‘plot_scatterer_size’ to 200 m before 
plotting. 

3.1	Downsampling	
By default, PS points are retained at full resolution. However, for the current application, 
we do not need such a high sampling rate in space. To reduce computation time, the data 
have been resampled the data to a coarser grid, with a 200 m spacing. An additional effect 
of the resampling is to reduce the noise, and resampling also offers another chance to 
reject the noisiest pixels.  
 
To change the downsampling, set the parameter ‘merge_resample_size’ (units are m, 
default is 0, meaning no resampling) and rerun Step 5. Check how the wrapped phase 
looks now with ps_plot. In particular, check areas with high fringe rates – are the fringes 
sampled well enough, or is a smaller grid size necessary? Try also varying 
‘merge_standard_dev’ (threshold standard deviation in radians) and check the effect that it 
has. 

4.	Phase	unwrapping	
Once happy with the PS selection you can unwrap the phase using StaMPS Step 6. 
During unwrapping, the data are temporarily resampled to a grid. The size of the grid is 
controlled by parameter ‘unwrap_grid_size’, and should be at least as large as 
‘merge_grid_size’. Go ahead and set it to the same value, then run Step 6. 
 
Once Step 6 is finished, plot the results using 
>> ps_plot(‘u’) 

The main parameters to play with to improve unwrapping are ‘unwrap_grid_size’ – making 
it larger reduces noise but may also alias (undersample) the signal, and 
‘unwrap_time_win’, which is the filter length (in days), used to estimate the noise 
contribution for each phase arc (phase difference between neighbouring pixels). But for 
now continue to the next step. 

4.1	Estimation	of	spatially-correlated	errors	
Step 7 estimates the total DEM (a.k.a look angle) error, and the master atmosphere and 
orbit error. Run Step 7 and view the DEM error 
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>> ps_plot(‘d’) 

This is given as radians per m of baseline. To convert to height errors, use the function 
‘K2q’. Also look at the master atmosphere using  
>> ps_plot(‘m’) 

You can plot unwrapped phase after subtracting DEM error and master atmosphere with 
>> ps_plot(‘u-dm’) 

Check for unwrapping errors i.e., inconsistent jumps in phase. Unwrapping errors are more 
likely to occur in interferograms with longer perpendicular baselines. This is for two 
reasons, firstly there is more noise associated with each PS, and secondly, the phase due 
to any spatially-correlated DEM error is larger, as it is proportional to perpendicular 
baseline. To check the baselines, enter 
>>ps_info 

You can also see the estimated noise for each interferogram, which is calculated from the 
phase that is not correlated spatially and not correlated with baseline. Anything above ~80 
degrees is likely to give trouble for unwrapping. In this case we are using Sentinel-1 data 
and the baselines are all small. 
 
The plot for ‘u-dm’ should also be smoother than ‘u’. Note that the default colour scales will 
be different and, if smoother, the phase range should be smaller. If not generally 
smoother, one or more interferograms has probably unwrapped incorrectly. It is also worth 
comparing the ‘u-dm’ to the wrapped phase corrected for ‘d’ and ‘m’: 
>> ps_plot(‘w-dm’) 

If there are unwrapping errors in some images, you can drop them from the spatially-
correlated error estimation. E.g. to drop the 17th and 18th interferograms 
>> setparm(‘scla_drop_index’,[17,18]) 

Then rerun Step 7. To plot unwrapped phase with DEM error and master atmosphere 
subtracted: 
>> ps_plot('u-dm') 

Removing the spatially-correlated error from the wrapped phase can actually help with the 
unwrapping, and it is a good idea to run Step 6 again after running Step 7 (estimates from 
Step 7 are automatically subtracted from the wrapped phase before unwrapping).  
 
If all interferograms have been unwrapped successfully, reset ‘scla_drop_index’ to the 
default value and rerun Step 7. If it is still not possible to unwrap all interferograms without 
errors you can drop some completely by setting ‘drop_ifg_index’ and rerunning from any 
Step 2, 3 or 4. 
 
N.B If you want to rerun Step 6 at any time without subtracting the results from Step 7, 
enter 
>> scla_reset  
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4.2.	Ramp	estimation	
It can be interesting to look at unwrapped phase with a linear phase ramp subtracted, 
especially if you are interested in local signals only. You can do this by setting 
‘scla_deramp’ to ‘y’ and rerunning Step 7. To visualise the unwrapped interferograms with 
the ramps subtracted: 
>> ps_plot(‘u-dmo’) 

Note that you can plot unwrapped phase with any combination of estimated errors 
subtracted, e.g. 
>> ps_plot(‘u-o’) or >> ps_plot(‘u-do’) 

Subtracting a ramp can also help with phase unwrapping, so it may be worth rerunning 
Steps 6 and 7 if you suspect that errors remain. 

5.	Velocity	estimation	
You can plot the mean velocity using 
>> ps_plot('v') 

The large subsidence is due to water extraction beneath the city. Most of the city is built on 
old lake sediments, which subside the most. 
 
To subtract DEM error and oribital ramps before estimating mean velocity, run 
>> ps_plot(‘v-do’) 

(Note that there is no option to subtract ‘m’ first, as this would not change the mean 
velocity.) 
 
The velocity values are relative to the mean velocity of the whole image, by default. You 
can set a circular reference area using the ‘ref_centre_lonlat’ and ‘ref_radius’ parameters, 
or a rectangular reference area using the ‘ref_lon’ and ‘ref_lat’ parameters. Pick an area in 
the west of the image and set this as your reference area, using a circular area with radius 
500 m. 

5.1	Velocity	standard	deviation	and	time	series	
To estimate the standard deviation of the velocity estimates (relative to the reference area) 
with DEM errors and ramps subtracted, enter 
>> ps_plot(‘vs-do’) 

Areas with larger standard deviation indicate either larger errors (due perhaps to 
atmosphere or unwrapping errors) or deformation that is non-linear. You can get a handle 
on this by plotting time series of a few points. 
>> ps_plot(‘v-do’,’ts’) 

Click on the ‘TS plot’ button and select an area of the image using the cross hairs. The 
time series for the nearest resampled PS pixels will be plotted.  
 
You can set the search radius within the plotted figure. Try changing the radius to 500 m 
and reselecting a point. Now all PS within 500 m of your selected position are plotted, 
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together with the average of these PS. 
 
Try plotting various positions with different standard deviations. Can you comment on the 
cause of the areas with higher standard deviations? 

6.	Images	with	strong	atmosphere	
If any images contain strong atmosphere, they can bias the estimate of velocity. You can 
see the effect that each image has on velocity estimation using 
>> ps_plot(‘vdrop-do’) 

This plots the mean velocity estimated by dropping each interferogram in turn. Is it a 
strong effect?  

7.	Output	to	Google	Earth	
You can plot output on Google Earth using ps_gescatter. It is best to plot at full resolution, 
but pick only a subset of the area to avoid crashing GE with too many points. Go into the 
PATCH_34 directory, run steps 6 and 7, then: 
>>ps_plot('v-d',-1) 

>>load ps_plot_v-d 

>>ps_gescatter('ps.kml',ph_disp,1,0.4,[-10,50) 

This will create a file ps.kml in PATCH_34 directory, which can be opened in Google 
Earth.  

7.	Other	
You can play with separating the atmospheric and deformation signals using StaMPS Step 
8. 
 
 


