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A B S T R A C T

Remote sensing assessment of crop residue cover (fR) and tillage intensity can improve predictions of the en-
vironmental impact of agricultural practices and promote sustainable management. Spectral indices for esti-
mating fR are sensitive to soil and crop residue water contents, therefore the uncertainty of fR estimates increases
when moisture conditions vary. Our goals were to evaluate the robustness of spectral residue indices based on
the shortwave infrared region (SWIR) for estimating fR and to mitigate the uncertainty caused by variable
moisture conditions on fR estimates. Ten fields with center pivot irrigation systems (eight partially irrigated and
two uniformly dry fields) were identified in Worldview-3 satellite imagery acquired for a study site in Maryland
(USA). The fields were mid-irrigation at the time of imagery acquisition, allowing comparison of residue cover
under dry and wet conditions. Fields were subdivided into approximately equal-size wedges within the dry and
wet portions of each field, and the SWIR bands were extracted for each pixel. Two crop residue indices
(Normalized Difference Tillage Index (NDTI); Shortwave Infrared Normalized Difference Residue Index (SINDRI)
and a water index (WI) were calculated. Reflectance in each band was moisture-adjusted based on the WI
difference between wet and dry wedges, and updated NDTI and SINDRI were calculated. Finally, the probability
density distributions of fR estimated from the residue indices were calculated for each field. SINDRI was more
robust than NDTI for estimating fR. Moisture corrections of spectral bands reduced the root mean square error of
NDTI fR estimates from 22.7% to 4.7%, and SINDRI fR estimates from 6.0% to 2.2%. The mean and variance of
the probability density distribution of fR estimated from residue indices, before and after moisture correction,
were greatly reduced in the partially irrigated fields, but only slightly in fields with uniform water distribution.
The estimation of fR should be based on SINDRI if appropriate bands are available, but fR can be reliably esti-
mated by combining NDTI with a water content index to mitigate the uncertainty caused by variable moisture
conditions.

1. Introduction

Maintaining crop residues on the soil surface is a key component of
conservation agriculture promoted by the Food and Agriculture
Organization of the United Nations to make more sustainable cropping
systems (FAO, 2015). The soil is often completely covered by crop re-
sidues after harvest, but residue cover decreases as the soil is tilled or
residues are removed for fuel or feed. Crop residue fractional cover (fR)
reduces soil erosion and runoff, and therefore the amount of nutrients
and agrochemicals that reach surface waters (Delgado, 2010). Tillage
intensity is the main management practice that controls fR and a re-
duction in tillage is associated with increasing soil organic matter and

water retention capacity (Hobbs et al., 2008). In addition, tillage in-
tensity is often a key variable in models, such as EPIC (Izaurralde et al.,
2006) and SWAT (Gassman et al., 2007), that predict the overall impact
of agricultural systems on soil organic carbon, greenhouse gas emis-
sions, and water quality. These models require geospatial information
on landscape topography, soil properties, weather and climate, crop
type and management practices, including soil tillage intensity. Ap-
propriate databases exist for all of these requirements except for soil
tillage intensity. Thus, the capability to assess fR and soil tillage in-
tensity can help to improve predictions of the impact of agricultural
practices across landscapes and further promote sustainable manage-
ment of our resources.
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Currently, in selected counties in the U.S., only qualitative in-
formation on crop residue management is available from farmer in-
terviews and road-side surveys (CTIC, 2015). The quantitative standard
used by the U.S. Department of Agriculture-Natural Resources Con-
servation Service (USDA-NRCS), the line-point transect, is impractical
for wide-scale use because of time and human resources constraints
(Corak et al., 1993; Thoma et al., 2004). Only remote sensing has the
potential for monitoring fR over large areas in a timely and cost effec-
tive manner (Zheng et al., 2014).

Early remote sensing methods for assessing fR were often based on
the relatively broad spectral bands of Landsat and similar satellites
(Biard and Baret, 1997). Although these multispectral satellites typi-
cally have only a few relatively broad spectral bands, they provide
global coverage and have been used to assess fR at regional scales (Van
Deventer et al., 1997; Thoma et al., 2004; Sullivan et al., 2008; Zheng
et al., 2012). The Normalized Difference Tillage Index (NDTI) (Van
Deventer et al., 1997) is generally one of the best of the Landsat-based
tillage indices for estimating fR (Table 1). The corresponding bands of
Landsat 4 and 5 Thematic Mapper (TM), Landsat 7 Enhanced Thematic
Mapper (ETM+), Landsat 8 Operational Land Imager (OLI), and Sen-
tinel-2 may be used.

For the Landsat bands, the differences in reflectance of soils and
crop residues are small and the accuracy of estimating fR is often poor
(Serbin et al., 2009; Quemada and Daughtry, 2016). However, in the
2100–2350 nm wavelength region, crop residues have absorption fea-
tures associated with cellulose and lignin that are absent in the spectra
of soils and green vegetation (Kokaly and Clark, 1999). Various spectral
indices based on detecting these absorption features have been pro-
posed (Daughtry, 2001; Serbin et al., 2009), but are not available using
Landsat.

Advanced multispectral imagers, e.g., the Worldview-3 (WV-3) (SIC,
2017) and Advanced Spaceborne Thermal Emission and Reflection
radiometer (ASTER) (Abrams, 2000), include multiple bands in the
cellulose and lignin absorption region. The most robust crop residue
index for these advanced multispectral sensors is the Shortwave In-
frared Normalized Difference Residue Index (SINDRI) (Serbin et al.,
2009), which can be calculated using the SWIR band 6 (2185–2225 nm)
and 7 (2235–2285 nm) of WV-3 (Table 1). These WV-3 bands also
correspond to ASTER bands A6 and A7. However, the ASTER SWIR
sensor is no longer available due to detector failure in April 2008.
Worldview-3 has 3.7-m spatial resolution for the SWIR bands, and is
well suited for studying episodic events, but its narrow swath width is
not suited for mapping large areas in a timely manner.

Water in the crop residues and soils reduces reflectance at all wa-
velengths, attenuates the cellulose and lignin absorption features, and
reduces the contrast between soil and crop residues (Daughtry and
Hunt, 2008; Wang et al., 2013). Thus, the uncertainty of fR estimates
increases as moisture content of the soil and residue increases, and any

method to accurately monitor soil tillage intensity must account for
variations in water content. Quemada and Daughtry (2016) showed
that SINDRI and NDTI accurately estimated fR when moisture condi-
tions were relatively dry (i.e., relative water content (RWC) < 0.25),
but when scene moisture conditions varied from dry to wet the un-
certainty of fR estimates increased. Although SINDRI was more robust
to changes in moisture conditions than NDTI, a multivariate linear
model that used pairs of spectral indices, one for RWC and one for fR,
improved estimates of fR using SINDRI. In contrast, NDTI was very
sensitive to water content and corrections were unreliable when
RWC> 0.25.

In practice, water contents of soils and crop residues often vary
spatially due to minor changes in local topographic relief. Therefore, a
robust protocol is required to estimate fR from indices calculated using
satellite imagery under varying moisture conditions.

Our goal is to propose a method that mitigates the uncertainty
caused by variable moisture conditions on remotely sensed estimates of
crop residue cover. Specific objectives were to 1) evaluate the robust-
ness of SWIR-based spectral residue indices under various moisture
conditions and 2) develop a reliable method to mitigate the uncertainty
caused by variable moisture conditions on estimates of crop residue
cover. To achieve this goal, we compared the dry and wet portions of
partially-irrigated fields that had been captured mid-irrigation by WV-3
imagery, assuming that residue cover was consistent across each field.

2. Material and methods

2.1. Dataset of field satellite images

Space-borne WV-3 images were acquired on 14 May 2015 over a
study site in the Choptank River watershed of eastern Maryland (USA)
(Fig. 1). These images were inspected and determined to be properly
projected and free of clouds over the study site fields, thus no re-pro-
jection or cloud masking were performed. MODTRAN (Spectral Sci-
ences Inc., Burlington, MA, US) was used for atmospheric correction,
producing coefficients for converting image radiance values to surface
reflectance values. R software was used to apply MODTRAN coefficients
to radiance imagery and to output surface reflectance imagery. In-
dividual surface reflectance images were then mosaiced to cover the
region of study using ENVI (Harris Geospatial, Boulder, CO, USA).

On the day of imagery acquisition soils were somewhat dry, and
irrigation was underway on a number of fields. The dataset used in this
paper was composed of 10 fields with full or semi-circular irrigation
pivots identified in the WV-3 images. When the images were acquired
(12:06 Eastern Daylight Time), the irrigation systems in fields 1 to 8
were operating and, as a result, these fields had clearly identifiable
areas with differing water content due to irrigation status (recently ir-
rigated versus not-yet-irrigated). Inside each field, various wet and dry
wedges were differentiated based on visual analysis of the image. For
each of the wedges, the SWIR bands were extracted from each pixel and
the mean and standard error were calculated (Table 2). The 3.7 m re-
solution of WV-3 image was resample to 4 m. The average size of each
wedge was 9433 m2, each pixel represented 16 m2 and, therefore, the
average number of pixels per wedge was 590. The wedge in which each
pivot arm was actively spraying water was deleted, along with various
anomalies such as wheel tracks and shallow drainage ditches.

Fields 9 and 10 had not been recently irrigated and thus had rela-
tively uniform water contents when the WV-3 image was acquired.
They were chosen to provide a measure of uniformity of the indices in
the absence of irrigation. Both fields were subdivided into wedges fol-
lowing the procedure defined for fields 1–8 providing a measure of the
expected spatial variation of WI and fR within a field. The complete
dataset contained 10 fields and 98 wedges. Fig. 1c shows an example of
identified fields.

Table 1
Spectral bands used for the crop residue cover indices SINDRI (Shortwave Infrared
Normalized Difference Residue Index) and NDTI (Normalized Difference Tillage Index)
and the water index (WI).

Banda Wavelengths, nm Equation Reference

Residue index
SWIR6 2185–2225 SINDRI −

+

100 (SWIR6 SWIR7)
SWIR6 SWIR7

Serbin et al., 2009
SWIR7 2235–2285
OLI6 1570–1650 NDTI −

+

OLI6 OLI7
OLI6 OLI7

Van Deventer
et al., 1997OLI7 2110–2290

Water index
SWIR3 1640–1680 WI SWIR3

SWIR5
Quemada and
Daughtry (2016)SWIR5 2145–2185

a SWIR3, SWIR5, SWIR6 and SWIR7 are Worldview-3 bands at the designated wave-
lengths; and OLI6 and OLI7 are Landsat OLI bands simulated with Worldview-3
[OLI6 = average bands (2, 3, 4), OLI7 = average bands (5, 6)].
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Fig. 1. Location of fields in the Worldview-3 image from Tuckahoe watershed in eastern Maryland (USA) acquired on 14 May 2015 (a, b), and detailed of a partially irrigated field with
different water content areas (field 5) and with uniform water content distribution (Field 10).

Table 2
Field ID and location, area, number of pixels, type of crop residue, and number (n) of wet and dry wedges within each particular field. The mean values of water index (WI), Relative water
content (RWC), Normalized Difference Tillage Index (NDTI), Shortwave Infrared Normalized Difference Residue Index (SINDRI) before and after moisture correction (NDTI*, SINDRI*)
for the wedges of each field is provided. Fields without distinction between wedges wetness had uniform moisture conditions and were subdivided into East and West.

Field ID Area (ha) Pixels number Type of crop residue Wedges within each particular field

Type n WI RWCa Before moisture correction After moisture correction

NDTI SINDRI NDTI* SINDRI*

1 7.74 4839 Maize Dry 3 1.144‡ 0.34‡ 0.102‡ 3.30‡ 0.105‡ 3.29
Wet 4 1.342‡ 0.76‡ 0.173‡ 4.22‡ 0.094‡ 3.40

2 3.58 2236 Maize, barley Dry 5 1.082‡ 0.21‡ 0.075‡ 2.07‡ 0.074 2.05
Wet 4 1.362‡ 0.80‡ 0.181‡ 3.48‡ 0.077 2.09

3 4.74 2965 Maize, barley, wheat Dry 4 1.100‡ 0.24‡ 0.083‡ 2.09‡ 0.081 2.07
Wet 6 1.361‡ 0.80‡ 0.181‡ 3.39‡ 0.081 2.14

4 6.81 4257 Soybean, wheat Dry 3 1.269‡ 0.61‡ 0.150‡ 6.19‡ 0.148 6.17
Wet 3 1.322‡ 0.72‡ 0.168‡ 6.42‡ 0.145 6.16

5 21.50 13,435 Maize, soybean Dry 5 1.004‡ 0.04‡ 0.045‡ 0.59‡ 0.044‡ 0.58
Wet 6 1.072‡ 0.19‡ 0.067‡ 0.84‡ 0.055‡ 0.62

6 20.92 13,075 Maize Dry 8 1.185‡ 0.43‡ 0.116‡ 2.05‡ 0.109 2.02
Wet 6 1.247‡ 0.56‡ 0.133‡ 2.21‡ 0.104 1.99

7 3.12 1953 Maize Dry 4 1.267‡ 0.60‡ 0.139‡ 4.62‡ 0.142 4.63
Wet 3 1.396‡ 0.88‡ 0.183‡ 5.07‡ 0.131 4.32

8 1.96 1226 Maize Dry 6 1.047‡ 0.13‡ 0.054‡ 1.84‡ 0.052‡ 1.83
Wet 5 1.166‡ 0.39‡ 0.104‡ 2.16‡ 0.073‡ 1.83

9 7.17 4479 Maize East 7 1.037 0.11 0.055 1.44 0.053 1.33
West 6 1.039 0.12 0.056 1.49 0.054 1.35

10 14.90 9315 Maize, barley East 5 1.048 0.13 0.059 1.32 0.058 1.34
West 5 1.040 0.12 0.056 1.32 0.055 1.34

a RWC estimated from Quemada and Daughtry (2016): RWC = 2.0 ∗ WI − 2.1.
‡ Within a field, significant difference between wet and dry wedge type according to Fisher's LSD at a 0.05 probability level.
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2.2. Dataset of fR field measurements

Crop residue cover was measured in two fields, one almost com-
pletely covered by residues (field 4) and another almost completely
bare soil (field 5). We used a digital camera (Canon G15) mounted on a
pole at 2.14 m above the soil at a 0° view zenith angle and acquired 10
images per field (spatial resolution < 1 mm) at 3–5 m intervals along
two transects in each field. The fractions of green vegetation, crop re-
sidue, and soil in each image were determined visually using
SamplePoint software (Booth et al., 2006). The numbers of crosshairs
that intersected green vegetation, crop residue or soil were counted,
and fR was calculated as the proportion of crop residue points in each
image. The total number of crosshairs per image was 132. We divided
the images among four analysts. When each analyst evaluated the same
subset of 10 images, the root mean square error was< 4%. Green ve-
getation was< 3% in all images. The residues in the fields were from
maize (Zea mays L.), soybean (Glycine max Merr.), barley (Hordeum
vulgare L.) and wheat (Triticum aestivum L.) crops (Table 2).

2.3. Crop residue and water content indices

Spectral indices defined in Table 1 were calculated for each pixel in
each of the wedges (Table 2). In addition, the relative water content
(RWC) for each pixel was estimated using the spectral water index
previously proposed in the literature to estimate crop residue and soil
moisture conditions (Quemada and Daughtry, 2016). Reflectance fac-
tors for Landsat OLI bands (NASA, 2017; SIC, 2017) were estimated
using WV-3 bands.

Crop residue cover measured through photographic analysis in dry
wedges of fields 4 and 5 was linearly related to NDTI [Eq. (1)] and
SINDRI [Eq. (2)]:

= ∗ −f 789.07 NDTI 30.774R NDTI (1)

= ∗ −f 15.69 SINDRI 9.194R SINDRI (2)

where, fR_NDTI and fR_SINDRI are crop residue covers estimated using NDTI
and SINDRI, respectively. Both equations were highly significant
(p < 0.001, adjusted r2 > 0.99).

2.4. Analysis of variability

We calculated the mean and standard error of NDTI, SINDRI, and WI
for each of the wedges in each field. The calibration equations were
then used to estimate fR for each wedge using either NDTI or SINDRI.
We assumed that each field had uniform fR among wedges, and that fR
differences within a field were due to inherent spatial variability in
residue cover. To evaluate the moisture effect, the driest wedge (i.e. the
one with a lower WI) in each field was selected and its fR calculated
using Eqs. (1) and (2). We also assumed fR for each driest wedge was
representative for the entire field. The variability within a field was
evaluated as the root mean square error (RMSE) of the fR estimated for
all the wedges with respect to the driest, following the equation:

∑= −RMSE
n

f f1 ( )
i

n

R i R driest wedge
2

(3)

where, n is the number of wedges in each field, fR i is the residue cover
in wedge i, and fR driest wedge is the residue cover in the driest wedge of a
particular field. Finally, the total error of fields with non-uniform water
distribution (RMSENon) was calculated as the mean of the RMSE of in-
dividual fields from 1 to 8. The percent reduction of the RMSE (%
RMSE) was calculated as the difference between the RMSE before and
after moisture correction with respect to the RMSE before the correc-
tion.

The variability of fR within each field was also evaluated by calcu-
lating the Range as the difference between the maximum and the
minimum mean fR of the wedges within each field. The maximum
variability of the dataset (Rangemax) was obtained as the largest range of
the whole dataset.

Fig. 2. Crop residue cover estimated from A) the
Normalized Difference Tillage Index (fR_NDTI) and B) the
Shortwave Infrared Normalized Difference Residue Index
(fR_SINDRI) in the dry and the wet wedges of the various
fields before and after moisture correction. Fields 9 and 10,
as moisture distribution was uniform, were subdivided in
East and West wedges for comparison purposes.
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2.5. Moisture correction

Water content of soils and crop residues affected the reflectance
factors of all SWIR bands used to calculate fR. The reflectance factor of
each band was plotted against the WI as an indicator of relative water
content (RWC) of the crop residues and soils. Reflectance in each band
was moisture-adjusted for each wedge (Ref*band i) by adding to the
measured reflectance in the wedge (Refband i) the product of the dif-
ference in WI between the actual wedge (WIi) and the driest wedge in

the field (WIdriest wedge) multiplied by the slope of the linear relationship
between the SWIR bands involved in the residue index calculation
(slopeband) and the WI, following the equation:

= + −∗Ref Ref slope ·(WI WI )band i band i band driest wedgei (4)

The slope was optimized to obtain the minimum RMSENon. Moisture-
adjusted reflectance values were used to calculate moisture-adjusted
NDTI and SINDRI (called NDTI* and SINDRI*) which, in turn, were
used for moisture-adjusted fR for each index using either Eqs. (1) or (2).

Fig. 3. Changes in reflectance bands OLI 6 (1570–1650 nm) and 7 (2110–2290 nm) of Landsat OLI satellite as function of the water index.
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Fig. 4. Changes in reflectance bands SWIR 6 (2185–2225 nm) and 7 (2235–2285 nm) of Worldview-3 satellite as function of water index.
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To evaluate the performance of the moisture correction, the RMSENon
and the Rangemax were calculated for the moisture-corrected dataset.

Finally, the moisture correction was applied to all the individual
pixels in the 10 fields, and moisture-corrected average index values per
wedge were calculated. The probability density distributions of WI and
fR estimated from the residue indices, before and after the moisture
correction, were calculated for each field.

3. Results

3.1. Indices and fR estimation

In the fields that were partially irrigated, the WI, NDTI, and SINDRI
were significantly higher in the wet wedges than in the dry wedges
(Table 2). As a consequence, the mean fR of the wet wedges was
overestimated in fields 1 to 8 compared to the dry wedges (Fig. 2). For
five of the fields, mean fR estimated using NDTI was> 100% for the
wet wedges. For all partially irrigated fields, the ratio between the
mean fR estimated from NDTI in the wet and dry wedges was> 2,
whereas between the mean fR estimated from SINDRI was ≈1.3.

In the non-irrigated fields without distinction between wedges
wetness (fields 9 and 10), no significant differences were observed
between the wedges in either NDTI or SINDRI, as a result the mean fR
was established to be uniform (Table 2; Fig. 2). The lack of difference in

WI also reflected that moisture was uniform in both fields. The RWC
ranged from 9 to 13 for field 9 and from 10 to 15 for field 10. Even in
these fields there was some heterogeneity in the spatial distribution of
fR as observed by the standard error, as would be expected from in-field
spatial variability, but this heterogeneity was< 2% of the mean.

3.2. Moisture correction

Reflectance of the SWIR bands used for NDTI (Fig. 3) and SINDRI
(Fig. 4) decreased linearly with WI for each field. Although slight dif-
ferences in the slope were observed for each band and field, overall the
tendency was similar. When the wetness index increased, the nu-
merator of both residue indices remained nearly constant while the
denominator decreased. Thus, both NDTI and SINDRI increased as
water content increased.

The slope to correct the reflectance for NDTI by WI that provided the
minimum RMSENon was 0.971; whereas the slope to correct SINDRI
bands was 0.358. The new residue indices calculated using the cor-
rected bands, NDTI* and SINDRI*, showed less variation between the
wet and dry wedges within each field (Table 2). No significant differ-
ences for mean SINDRI* between wet and dry wedges were observed
within any of the fields.

The RMSE of the fR based on NDTI* decreased in all fields when
compared with the fR based on NDTI, the RMSENon declined from 22.7

Table 3
Variation (RMSE and Range) for residue cover estimated using NDTI and SINDRI before (fR_NDTI, fR_SINDRI) and after (fR_NDTI⁎, fR_SINDRI⁎) moisture correction for each field, and for all the
fields with non-uniform water distribution (RMSENon and Rangemax). The % RMSE shows the percent reduction of the RMSE before and after the moisture correction with respect to the
RMSE before the correction.

Field ID Before moisture correction After moisture correction

fR_NDTI fR_SINDRI fR_NDTI⁎ fR_SINDRI⁎

RMSE Range RMSE Range RMSE % RMSE Range RMSE % RMSE Range

Fields with non-uniform water distribution
1 33.8 81 9.9 17 2.7 92† 11 2.8 72† 12
2 30.6 100 9.8 25 2.3 93† 7 2.7 72† 8
3 50.0 102 12.0 24 3.2 94† 11 2.0 83† 8
4 6.3 18 2.5 7 1.0 84† 4 1.7 32† 7
5 13.3 31 2.4 8 9.2 31† 20 2.0 17 8
6 14.2 47 2.5 10 4.8 66† 21 1.1 57† 6
7 11.9 42 5.5 14 2.9 84† 12 2.8 51† 11
8 21.7 52 3.4 12 10.1 54† 20 2.5 27† 9
RMSENon 23.4 6.0 4.5 81† 2.2 63†

Rangemax 102 25 21 12

Fields with uniform water distribution
9 4.9 8 1.7 5 3.8 22 6 1.5 9 5
10 5.1 9 3.9 7 3.6 28 7 3.8 1 7

† The reduction of the RMSE before and after the moisture correction was significant at p < 0.05.

Table 4
Mean and variance of the density probability distribution of all pixels in each field for the water index and for residue cover estimated using NDTI and SINDRI before (fR_NDTI, fR_SINDRI) and
after (fR_NDTI⁎, fR_SINDRI⁎) moisture correction.

Field
ID

Water index Before moisture correction After moisture correction

fR_NDTI fR_SINDRI fR_NDTI⁎ fR_SINDRI⁎

Mean Variance Mean Variance Mean Variance Mean Variance Mean Variance

1 1.28 0.012 88 897.6 52 85.6 45 19.6 40 46.8
2 1.22 0.021 70 1839.5 35 225.7 28 17.7 24 61.7
3 1.28 0.016 89 1319.9 38 271.4 33 23.1 25 112.7
4 1.29 0.002 92 118.1 89 80.0 85 9.0 87 63.9
5 1.04 0.002 15 241.0 2 77.6 9 77.1 2 65.9
6 1.21 0.003 66 267.6 24 85.6 52 14.7 22 68.5
7 1.32 0.007 93 440.2 65 60.9 77 55.5 63 54.1
8 1.10 0.004 29 456.0 22 143.5 18 75.6 20 106.9
9 1.04 0.0001 12 23.9 13 32.7 11 13.1 13 31.7
10 1.04 0.0001 15 21.9 11 24.8 14 11.0 11 24.6
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to 4.7, and the Rangemax declined from 102 to 19 (Table 3). After
moisture correction, the lowest RMSE between wedges when estimating
fR from NDTI* was 1.2% (field 4) and the highest 9.2 (field 5). For
SINDRI, the moisture correction decreased RMSE in most fields,
RMSENon decreased from 6.0 to 2.2, and the Rangemax from 26 to 10
(Table 3). The highest RMSE between wedges when estimating fR from
SINDRI* was 2.8% (field 7), and the lowest 1.1% (field 6). This re-
presented a substantial improvement in accuracy for both moisture
corrected indices.

In fields 9 and 10, which had a uniform spatial distribution of RWC,
estimation of fR from residue indices was improved only slightly by

moisture correction (Table 3). In field 9 the RMSE of fR decreased from
4.9 if estimated using NDTI to 4.3 from NDTI*, and from 1.7 using
SINDRI to 1.1 using SINDRI* (Table 3). Results for field 10 were similar.
This result reflected the minimal variability in moisture content within
the non-irrigated fields.

3.3. Histograms, and graphical representation

The moisture corrections changed the distributions of WI, NDTI,
SINDRI and fR_NDTI and fR_SINDRI in each of the 10 fields. Overall, the
results reinforce the previous finding remarked on the wedge analysis.

Before moisture correction

Field 2
n = 2236

After moisture correction
Field 2

n = 2236

Field 3
n = 2965

Field 3
n = 2965

Field 9
n = 4479

Field 9
n = 4479

% Residue cover estimated from NDTI

Fig. 5. Probability density function of the percentage of residue cover estimated from NDTI before and after moisture correction for each pixel of the fields 2 and 3 (partially irrigated)
and field 9 (uniform moisture distribution). Density is the probability of a pixel to fall within a crop residue cover class (i.e. 10–20%). n is the number of pixels per field.
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The variance of the probability density distribution of WI was at least
20 times larger in fields 1 to 8 than in fields 9 and 10, and was parti-
cularly large in fields 1, 2 and 3, which had the largest differences in
moisture between dry and wet wedges (Table 4). The mean fR estimated
for both residue indices decreased after moisture correction for all fields
(Table 4). This decrease was larger for fR_NDTI than for fR_SINDRI, con-
firming both that SINDRI is more robust than NDTI to moisture con-
ditions, and that the moisture correction proposed in this article sig-
nificantly reduced the effects of variable moisture conditions on NDTI.
For fields 1 to 8, mean fR_NDTI was 68% before moisture correction but

44% after moisture correction. The largest corrections were in fields 2
and 3 in which fR_NDTI⁎ was 2.5 times lower than fR_NDTI.

The mean fR estimated from SINDRI was reduced from 41% to 35%
when corrected by moisture (Table 4), with the largest ratio of fR_SINDRI⁎
to fR_SINDRI equal to 1.5. The effects of moisture correction on fR esti-
mated from the residue indices were also evident in the reduction of the
variance, a measure of the dispersion, in fields 1 to 8 and to a lesser
extent in fields 9 and 10. Even in the fields with relatively uniform
moisture distribution, there was spatial variability and room for cor-
rection.

Before moisture correction

Field 2
n = 2236

After moisture correction
Field 2

n = 2236

Field 3
n = 2965

Field 3
n = 2965

% Residue cover estimated from SINDRI

Field 9
n = 4479

Field 9
n = 4479

Fig. 6. Probability density function of the percentage of residue cover estimated from SINDRI before and after moisture correction for each pixel of the fields 2 and 3 (partially irrigated)
and field 9 (uniform moisture distribution). Density is the probability of a pixel to fall within a crop residue cover class (i.e. 10–20%). n is the number of pixels per field.
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To illustrate the effects of moisture correction, we will focus on
fields 2, 3 and 9. Moisture corrections are more relevant in fields with
high WI variability than in fields with low WI variability. Pixels in fields
2 and 3 that had high RWC were corrected to a larger extent than pixels
in field 9 with a uniform moisture distribution (Figs. 5 and 6). The
moisture corrections clearly reduced the dispersion of the distribution
for fields 2 and 3 whereas the effect for field 9 was minimal. In fields 2
and 3, fR_NDTI showed a bi-modal distribution with pixels distributed in
two groups, one around 30% and the other much higher, other around
110–120% (Fig. 5). The moisture correction particularly influenced the
second group of pixels, in which wetness induced fR over-estimation.
After correction, fR_NDTI⁎ distribution in fields 2 and 3 had a single
modal peak centered around 30%. In field 9, with uniform moisture, the
probability density distribution of both, fR_NDTI and fR_NDTI⁎, had a single
maximum peak. When fR was estimated from SINDRI, the moisture
correction diminished the pixels dispersion but all the histograms pre-
sented a single peak before and after the moisture correction (Fig. 6),
showing that the SINDRI index is more resistant to the effects of
moisture. The fR_NDTI and fR_SINDRI images provide visual evidence that
pixels in the wet areas fR_NDTI and fR_SINDRI were higher than in the dry
areas, and that moisture corrections mitigated the differences (Figs. 7
and 8). For both histograms and images, the differences were larger in
fR estimated from NDTI than from SINDRI, which supports our hy-
pothesis that SINDRI is more robust than NDTI to variations in moisture
conditions.

4. Discussion

Water contents of residues and soils often vary spatially across fields
with minor changes in topographic relief, and temporally with local
meteorological conditions. These variations in water content also sig-
nificantly affect remotely sensed estimates of fR (Serbin et al., 2009;
Wang et al., 2013). Thus, in order to provide reliable estimates of fR at
local to regional scales, the impact of moisture must be mitigated.
However, reliable methods for mitigating the effects of spatially vari-
able water contents on remotely sensed estimates of fR have not been
developed. We have proposed a robust protocol that can be easily im-
plemented for correcting the reflectance of the SWIR bands used by the
residue indices, by using a spectral water index that is related to the
relative water content of soils and residues. The protocol for correcting
fR was evaluated using wet and dry areas of fields with center pivot
irrigation systems that had partially irrigated the fields when the image
was acquired.

NDTI is very sensitive to varying moisture conditions (Serbin et al.,
2009). Landsat bands, used for NDTI, are relatively wide and interact
with several water bands, which means that water content of each pixel
is particularly crucial for estimating fR. Quemada and Daughtry (2016)
reported that NDTI accurately assessed fR under relatively dry condi-
tions (RWC < 0.25), but as moisture conditions increased NDTI sig-
nificantly overestimated fR. Other studies successfully used NDTI to
distinguish between a few tillage intensity classes, but spatial variations

Fig. 7. Image of residue cover estimated from NDTI before and after moisture correction for fields 2 and 3 (partially irrigated) and field 9 (uniform moisture distribution).
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in moisture conditions were probably small because, in each case, the
test site was within a single Landsat image (Van Deventer et al., 1997;
Sullivan et al., 2008; Galloza et al., 2013). In a multi-temporal study,
Gelder et al. (2009) attempted to avoid the problem by selecting only
Landsat images that were acquired> 2 days after a precipitation event.

At spatial scales larger than a single field, tillage and planting op-
erations typically occur over a period of several weeks. A single satellite
image can provide a snapshot of tillage conditions for a single date, but
multiple images are required to track the progress of tillage and
planting operations over regional scales. Zheng et al. (2012, 2013)
demonstrated that the minimum NDTI values selected from a series of
Landsat images acquired during the planting season provided better
estimates of tillage intensity than using a single image. With the
availability of Landsat (NASA, 2017) and Sentinel-2 (European Space
Agency, 2017) images, multi-temporal techniques should benefit
greatly from moisture corrections within and among images. Reliable
spatially explicit information documenting fR and tillage intensity
would improve the performance of models that predict the impact of
agricultural management practices on soil, water, and air quality
(Izaurralde et al., 2006; Gassman et al., 2007).

In another study using SWIR satellite imagery, SINDRI was more
robust than other spectral indices for estimating fR even under wet
conditions (Serbin et al., 2009). Quemada and Daughtry (2016) pro-
posed using pairs of spectral indices - one for the RWC and another for
fR - to build multivariate models that mitigated the moisture effect;
however, calibration parameters required a dataset with abundant
ground measurements. In this study, we first used a water index to

correct the reflectance of each SWIR band for each pixel of a satellite
image, and then used corrected SINDRI* or NDTI* to measure percent
fractional residue. Reflectance in each SWIR band decreased linearly
and followed similar slopes as the WI increased; therefore, the correc-
tion can be conducted with a single factor.

The regression slopes were not the same in all fields (Figs. 3 & 4).
The reason for the different regression slopes is not clear. It was not
related to crop residue type or fR level. The water content of soil and
crop residues is not homogenous and is affected by soil texture and
litter decomposition (Quemada and Cabrera, 2002; Quemada, 2005).
Stage of organic residues decomposition varies with time (Quemada
and Menacho, 2001) and affects SWIR residue indices (Delgado, 2010).
Although optimizing the regression slope in each field separately pro-
vided a somewhat lower overall RMSE (data not shown), optimizing the
regression slope for all the fields together is more appropriate for large-
scale applications. Additional information about the local soil types,
moisture conditions, and type of crop residues may improve estimates
of the changes in reflectance of the SWIR bands relative to water con-
tent.

Clearly, reliable remotely sensed estimates of fR must account for
temporal and spatial variation in water content of soils and crop re-
sidues. The purpose of this study was not to examine the ability of
different spectral indices to assess moisture conditions, but to empha-
size the advantages of coupling water and residue indices to mitigate
the moisture effect. Spectral indices using various combinations of near-
infrared and SWIR bands have been correlated with the water content
of leaves (Hunt and Rock, 1989; Hunt Jr et al., 2016), plant canopies

Fig. 8. Image of residue cover estimated from SINDRI before and after moisture correction for fields 2 and 3 (partially irrigated) and field 9 (uniform moisture distribution).
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(Hardisky et al., 1983; Gao et al., 2015) and soils (Lobell and Asner,
2002; Whiting et al., 2004). We used the WI based on the ratio between
SWIR3 and SWIR5 WV-3 bands because it was proposed as a good in-
dicator of soil and crop residue RWC (Quemada and Daughtry, 2016).
The ratio between OLI6 and OLI7 Landsat OLI bands was also proposed
as an indicator of RWC, and in our present dataset both water indices,
SWIR3/SWIR5 and OLI6/OLI7, were highly correlated (r2 = 0.99) and
could be used interchangeably. Additional information could be used to
estimate moisture scene conditions, e.g. direct measurements of soil
moisture or microwave measurements, but coupling water and residue
indices from the same pixel spectra facilitates the implementation of
moisture correction and avoids additional uncertainties linked to
geospatial references. The strategy of coupling spectral indices could
also be applied to distinguish other confounded effects, such as the
identification of yellowing vegetation interspersed in green photo-
synthetic canopies (Prabhakara et al., 2015).

5. Conclusions

Analysis of partially irrigated fields located within WorldView-3
SWIR satellite imagery provided a unique opportunity to evaluate the
effect of moisture on indices associated with measurement of crop re-
sidue, under non-vegetated conditions. The Shortwave Infrared
Normalized Difference Residue Index (SINDRI) was more robust than
the Normalized Difference Tillage Index (NDTI) for estimating crop
residue cover under varying moisture conditions, although both were
affected by moisture. Correcting the reflectance of each spectral band
with a water index substantially mitigated the adverse effects of
moisture on residue cover estimation. Using a pair of spectral indices,
one for moisture content and one for residue cover, improved the
overall accuracy of both SINDRI and NDTI for estimating crop residue
cover in satellite images. Clearly, the estimates of residue cover or til-
lage intensity should be based on SINDRI when WV-3 bands are
available. However, for regional scale assessments, only Landsat and
Sentinel-2 can provide the wall-to-wall coverage required. Crop residue
cover and soil tillage intensity can be reliably estimated using NDTI if
the uncertainties caused by variable moisture conditions are mitigated.
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