
How to write a processor in Python

Even though SNAP is based on the Java programming language it supports also the development of processor plugins which are written in
Python. This is enabled by the so called snappy module. It enables Python developers to write processors for SNAP. In the background snappy
usese the library which builds a bridge between Java and Python.jpy
This page shall guide you through the steps necessary for creating such a plugin. A working example of a Python processor plugin can be found
in the on GitHub. As you will use the via snappy it is good to know this API. Before starting tosnap-examples repository Java API of SNAP Engine
implement an operator you should make sure that you have followed the procedure described in Configure Python to use the SNAP-Python

.(snappy) interface

Project Setup

In order to write a Python plugin for SNAP you need the following tools.

Maven >= v3.1
Maven is the build tool used to build and package the final plugin file.
2.7 <= Python <= 3.4 (recommend is =3.3)

In order to make the development easier we recommend as your IDE.PyCharm

Project structure

The recommended basic project structure looks like as shown in the following code block. We will look at the content and the meaning of each of
those files later.

<PROJECT_DIR>
| pom.xml (the project definition file for maven)
\---src
 \---main
 +---nbm
 | manifest.mf (settings for the plugin)
 +---python
 | my_python_op-info.xml (metadata about the operator)
 | my_python_op.py (the actual operator implementation)
 \---resources
 | layer.xml (integration into SNAP Desktop)
 \---META-INF
 \---services
 org.esa.snap.python.gpf.PyOperatorSpi (make the
operator known to SNAP Engine)

Operator implementation

To implement an operator you need to follow some conventions and rules. Have you heard already the saying "Don't call us, we call you!"?

That's how implementing implementing an operator for SNAP works. But here it has a positive meaning. Because you don't have to care for a lot
of things you usually need to when developing an algorithm. Things like reading the input and writing the output. In SNAP you only need to do
what you are asked for.

An operator implemented in Python needs to have three methods. An initialise, a compute and a dispose method. Please have a look at the
following skeleton on an operator.

Under Construction
 This page is still under construction and should be further improved.

Project Structure

http://jpy.readthedocs.io/en/latest/
https://github.com/senbox-org/snap-examples/tree/master/snap-engine-python-operator
http://step.esa.int/docs/v6.0/apidoc/engine/
https://senbox.atlassian.net/wiki/spaces/SNAP/pages/50855941/Configure+Python+to+use+the+SNAP-Python+%28snappy%29+interface
https://senbox.atlassian.net/wiki/spaces/SNAP/pages/50855941/Configure+Python+to+use+the+SNAP-Python+%28snappy%29+interface
http://maven.apache.org/
http://maven.apache.org/
https://www.python.org/
https://www.jetbrains.com/pycharm/

class MyOp:

 def __init__(self):
 pass

 def initialize(self, context):
 pass

 # You either implement this or the computeTileStack method
 def computeTile(self, context, band, tile):
 pass

 # You either implement this or the computeTile method
 def computeTileStack(self, context, target_tiles, target_rectangle):
 pass

 def dispose(self, context):
 pass

The can be dropped if not necessary, but in most cases you will need. In the method you do all the stuff which is__init__ initialize
necessary once in order to execute the algorithm, Things like preparing auxiliary data, validating the source product and so on. In the mdispose
ethod you should release all resource (file handles etc.) which were allocated during the execution of your operator.
For the compute method you can choose between two variations. One, the method, is the one to be preferred in the general case.computeTile
It computes target tiles independently from each other. The other, method, computes all tiles at once. This is useful if youcomputeTileStack
get all results from a neural net at once or you have dependencies between your results.

Now you might ask your self what is meant by tile. A tile is a chunk of data. In SNAP data is processed in tiles. The full scene image is not
processed at once. This would lead to a lot of memory problems. So we split the data into rectangular tiles. And each tile is processed individually.
You are free to access any source data also outside of the target rectangle. You are just requested to fill the target tile rectangle with data. Where
you get the data from is up to you.

The object you see as a parameter to all of the methods gives you to some general useful methods.context

Method Description

context.getSourceTile(rasterDataNode,
rectangle)

Retrieves the source data from the specified raster data node and the specified
rectangle. ()see API Doc

context.getSourceTile(rasterDataNode,
rectangle, broderExtender)

Retrieves the source data from the specified raster data node and the specified
rectangle. If the rectangle exceeds the bounds of the source the borderExtend

 defines how to handle this case. (er see API Doc)

context.getParameter()'parameterName' Retrieves the value of the named parameter. (see API Doc)

context.getSourceProduct() Get the source product which shall be processed. (see API Doc)

context.getSourceProduct('sourceProductName') Get the named source product which shall be processed. (see API Doc)

By extending the rectangle used with one of the methods you can get data which is outside of the target region which isgetSourceTile
currently processed.

Operator Metadata

Each operator be accompanied by a xml file. This file must start with the same name as the module in which the operator is implemented and
must end with . This file is used to define processing parameters, the source product(s) and some more metadata about the operator-info.xml
like an operator alias name, description, etc.version

Operator skeleton

http://step.esa.int/docs/v4.0/apidoc/engine/org/esa/snap/core/gpf/Operator.html#getSourceTile-org.esa.snap.core.datamodel.RasterDataNode-java.awt.Rectangle-
http://step.esa.int/docs/v4.0/apidoc/engine/org/esa/snap/core/gpf/Operator.html#getSourceTile-org.esa.snap.core.datamodel.RasterDataNode-java.awt.Rectangle-javax.media.jai.BorderExtender-
http://step.esa.int/docs/v3.0/apidoc/engine/org/esa/snap/core/gpf/Operator.html#getSourceTile-org.esa.snap.core.datamodel.RasterDataNode-java.awt.Rectangle-javax.media.jai.BorderExtender-
http://step.esa.int/docs/v4.0/apidoc/engine/org/esa/snap/core/gpf/Operator.html#getParameter-java.lang.String-
http://step.esa.int/docs/v3.0/apidoc/engine/org/esa/snap/core/gpf/Operator.html#getParameter-java.lang.String-
http://step.esa.int/docs/v4.0/apidoc/engine/org/esa/snap/core/gpf/Operator.html#getSourceProduct--
http://step.esa.int/docs/v3.0/apidoc/engine/org/esa/snap/core/gpf/Operator.html#getSourceProduct--
http://step.esa.int/docs/v4.0/apidoc/engine/org/esa/snap/core/gpf/Operator.html#getSourceProduct-java.lang.String-
http://step.esa.int/docs/v3.0/apidoc/engine/org/esa/snap/core/gpf/Operator.html#getSourceProduct-java.lang.String-

<operator>
 <name>org.me.MyPyOp</name>
 <alias>my_py_op</alias>
 <operatorClass>org.esa.snap.python.gpf.PyOperator</operatorClass>
 <version>1.0</version>
 <authors>ACME Guys</authors>
 <copyright>(C) 2016 ACME</copyright>
 <description>
 A short description of the operator
 </description>
 <namedSourceProducts>
 <sourceProduct>
 <name>source</name>
 </sourceProduct>
 </namedSourceProducts>
 <parameters>
 <parameter>
 <name>factor</name>
 <description>Short description of the
parameter</description>
 <dataType>double</dataType>
 <defaultValue>1.0</defaultValue>
 </parameter>
 </parameters>
</operator>

A full example for such a xml file can be found in the . In the following the meaning and the usage of the tags are described.example repository

XML Tag Description

<name> A unique identifier within SNAP

<alias> An user-friendly alias name to be used e.g. on the command line

< >operatorClass This must be always org.esa.snap.python.gpf.PyOperator

<version> The version of the operator. It should follow the concept of Semantic Versioning

<authors> The names of the authors

<copyright> The copyright notice

<descrption> A short description of the operator shown on the command line

<namedSourceProducts>
<sourceProduct>
<name>myInput</name>
</sourceProduct>
<sourceProduct>
<name>auxProduct</name>
</sourceProduct>
</namedSourceProducts>

This section defines one ore more source products. In the GUI currently one product is supported.
On the command line it is possible to use the names along with the option to specify the source-S
product, like -SmyInput=<path>

info.xml

https://github.com/senbox-org/snap-examples/blob/master/snap-engine-python-operator/src/main/python/ndvi_op-info.xml
http://semver.org/

< >parameters
 <parameter>
 <!--Parameter
definiton-->
 <parameter>
< >parameters

In the parameters section all the parameters needed by the operator are specified. Each
parameter is surrounded by the tag.<parameter>

Following the possible tags to be sued to configure a parameter (inside the tag).<parameter>

XML Tag Description

< >name The name of the parameter.

< >description The description of the parameter shown on the command line and as tool-tip in the GUI.

<label> Used in the GUI only instead of the name. The label can have white spaces in contrast to the name.

<unit> The unit of the parameter. Shown in the the user interface.

< >dataType The data type of the parameter, can be either .byte,char,short,int,long,boolean,double,String

< >defaultValue The value this parameter shall have by default.

<notNull> The parameter must be provided if set to .true

<notEmpty> The parameter must not be empty if set to . The difference to <notNull> is that even if the parameter tagtrue
present in a graph xml file it is not allowed to be empty. e.g. <bandName></bandName>

<interval> The valid interval for numeric parameters, e.g. : in the range 10 (inclusive) to 20 (exclusive)[10,20)

<valueSet> Set of values which can be assigned to a parameter field. The value set is given as textual representations of
the actual values. (We have an issue with this property at the moment)SNAP-730

<condition> A conditional expression which must return in order to indicate that the parameter value is valid, e.g. true valu
e > 2.5

< >pattern A regular expression pattern to which a textual parameter value must match in order to indicate a valid value,
e.g. a*

< >format A format string to which a textual parameter value must match in order to indicate a valid value, e.g. yyyy-MM-d
d HH:mm:ss.Z

<rasterDataNodeClass> The value can be or any other fully qualified name of theorg.esa.snap.core.datamodel.Band
sub-classes of . This is useful to ensure that the user can only specify bands, tie-point grids orRasterDataNode
mask of the source product.

Graphical UI for the Operator

Additionally to the -info.xml file there is another xml file which is important if the operator shall have a graphical User Interface (GUI).

https://senbox.atlassian.net/browse/SNAP-730
http://step.esa.int/docs/v3.0/apidoc/engine/org/esa/snap/core/datamodel/RasterDataNode.html

<filesystem>
 <folder name="Actions">
 <folder name="Operators">
 <file name="PyNdviOpAction.instance">
 <attr name="instanceCreate"
methodvalue="org.openide.awt.Actions.alwaysEnabled"/>
 <attr name="delegate"
methodvalue="org.esa.snap.core.gpf.ui.DefaultOperatorAction.create"/>
 <attr name="operatorName" stringvalue="py_ndvi_op"/>
 <attr name="displayName" stringvalue="Python NDVI
Processor Example"/>
 <attr name="dialogTitle" stringvalue="Python NDVI
Processor Example"/>
 <attr name="ShortDescription" stringvalue="Generates
NDVI from a source product with at least two spectral bands."/>
 <attr name="targetProductNameSuffix"
stringvalue="_ndvi"/>
 <attr name="helpId" stringvalue="pyNdviDoc"/> <!--The
helpId if help contents is provided-->
 </file>
 </folder>
 </folder>
 <folder name="Menu">
 <folder name="Optical">
 <folder name="Examples">
 <file name="PyNdviOpAction.shadow">
 <attr name="originalFile"
stringvalue="Actions/Operators/PyNdviOpAction.instance"/>
 <attr name="position" intvalue="0"/>
 </file>
 </folder>
 </folder>
 </folder>
</filesystem>

This file defines the action which will invoke the GUI of the operator and it also defines the location of the action within the menu. The foldActions
er must contain another folder named . Inside this the operator action and its attributes are defined. As a collector for the attributes a fileOperator
is created and this file gets a name. You are free to choose any name here. But it should not interfere with others and it should end with the suffix

. The attributes and should currently not be of any interest. They should always have the same value.instance instanceCreate delegate
as in the example. The attribute is used to specify which GUI of which operator shall be called. This value must be the same asoperatorName
the specified in the info.xml file. The defines the text of the menu entry and defines, as the name indicates,alias displayName dialogTitle
the title of the dialog. The attribute is a short description of the operator and used as tool-tip. If not other specified by theShortDescription
user the target product files will get the suffix specified by . This suffix is prepended before the file extension. ThetargetProductNameSuffix
last attribute is the . This is the id of the help page which shall be shown when the help button is pressed. Later more about this.helpId

In the folder , the menu structure of SNAP is reproduced. For each folder in the menu you create also a folder here with the same name. TheMenu
final menu entry is then represented by a file which refers to the file defined above in the section. Here it should end with the suffix Actions .sh

. The attribute links to the above defined action by using the full path to it. The attribute defines the position ofadow originalFile position
the entry within its parent folder.

Based on the definitions in the info.xml file a generic GUI is created for the operator when the defined menu entry is clicked. This comes right out
of the box and without additional GUI layouting.

Currently it is not possible to define your own GUI. You have to stick to the GUI which is generated for you.

Provide User Help Pages

Oracle describes in this document how to write help pages.PDF

Known issues

HDF library access
ensure same Python configuration (used libraries) on the user system as the developer uses
GPF.getDefaultInstance().getOperatorSpiRegistry().loadOperatorSpis() needs to be called
Import-Vector can't be used (see)forum thread
logging configuration might be changed by snappy (see)forum thread

Still TODO
Write separate page on how to write help pages
describe manifest.mf file
pom.xml should be described
PyOperatorSpi needs to be explained

https://docs.oracle.com/cd/E19253-01/819-0913/819-0913.pdf
http://forum.step.esa.int/t/using-mask-file-with-kmeansclusteranalysis-in-python/2423/
http://forum.step.esa.int/t/import-snappy-stops-python-import-logging-from-working/2362

	How to write a processor in Python

